Metamath Proof Explorer


Theorem clim0c

Description: Express the predicate F converges to 0 . (Contributed by NM, 24-Feb-2008) (Revised by Mario Carneiro, 31-Jan-2014)

Ref Expression
Hypotheses clim0.1 Z = M
clim0.2 φ M
clim0.3 φ F V
clim0.4 φ k Z F k = B
clim0c.6 φ k Z B
Assertion clim0c φ F 0 x + j Z k j B < x

Proof

Step Hyp Ref Expression
1 clim0.1 Z = M
2 clim0.2 φ M
3 clim0.3 φ F V
4 clim0.4 φ k Z F k = B
5 clim0c.6 φ k Z B
6 0cnd φ 0
7 1 2 3 4 6 5 clim2c φ F 0 x + j Z k j B 0 < x
8 1 uztrn2 j Z k j k Z
9 5 subid1d φ k Z B 0 = B
10 9 fveq2d φ k Z B 0 = B
11 10 breq1d φ k Z B 0 < x B < x
12 8 11 sylan2 φ j Z k j B 0 < x B < x
13 12 anassrs φ j Z k j B 0 < x B < x
14 13 ralbidva φ j Z k j B 0 < x k j B < x
15 14 rexbidva φ j Z k j B 0 < x j Z k j B < x
16 15 ralbidv φ x + j Z k j B 0 < x x + j Z k j B < x
17 7 16 bitrd φ F 0 x + j Z k j B < x