Metamath Proof Explorer


Theorem clim0cf

Description: Express the predicate F converges to 0 . Similar to clim , but without the disjoint var constraint F k . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses clim0cf.nf _ k F
clim0cf.z Z = M
clim0cf.m φ M
clim0cf.f φ F V
clim0cf.fv φ k Z F k = B
clim0cf.b φ k Z B
Assertion clim0cf φ F 0 x + j Z k j B < x

Proof

Step Hyp Ref Expression
1 clim0cf.nf _ k F
2 clim0cf.z Z = M
3 clim0cf.m φ M
4 clim0cf.f φ F V
5 clim0cf.fv φ k Z F k = B
6 clim0cf.b φ k Z B
7 0cnd φ 0
8 1 2 3 4 5 7 6 clim2cf φ F 0 x + j Z k j B 0 < x
9 2 uztrn2 j Z k j k Z
10 6 subid1d φ k Z B 0 = B
11 10 fveq2d φ k Z B 0 = B
12 11 breq1d φ k Z B 0 < x B < x
13 9 12 sylan2 φ j Z k j B 0 < x B < x
14 13 anassrs φ j Z k j B 0 < x B < x
15 14 ralbidva φ j Z k j B 0 < x k j B < x
16 15 rexbidva φ j Z k j B 0 < x j Z k j B < x
17 16 ralbidv φ x + j Z k j B 0 < x x + j Z k j B < x
18 8 17 bitrd φ F 0 x + j Z k j B < x