Step |
Hyp |
Ref |
Expression |
1 |
|
clim1fr1.1 |
|
2 |
|
clim1fr1.2 |
|
3 |
|
clim1fr1.3 |
|
4 |
|
clim1fr1.4 |
|
5 |
|
nnuz |
|
6 |
|
1zzd |
|
7 |
|
nnex |
|
8 |
7
|
mptex |
|
9 |
8
|
a1i |
|
10 |
|
1cnd |
|
11 |
|
eqidd |
|
12 |
|
eqidd |
|
13 |
|
id |
|
14 |
|
1cnd |
|
15 |
11 12 13 14
|
fvmptd |
|
16 |
15
|
adantl |
|
17 |
5 6 9 10 16
|
climconst |
|
18 |
7
|
mptex |
|
19 |
1 18
|
eqeltri |
|
20 |
19
|
a1i |
|
21 |
4
|
adantr |
|
22 |
2
|
adantr |
|
23 |
|
nncn |
|
24 |
23
|
adantl |
|
25 |
3
|
adantr |
|
26 |
|
nnne0 |
|
27 |
26
|
adantl |
|
28 |
21 22 24 25 27
|
divdiv1d |
|
29 |
28
|
mpteq2dva |
|
30 |
4 2 3
|
divcld |
|
31 |
|
divcnv |
|
32 |
30 31
|
syl |
|
33 |
29 32
|
eqbrtrrd |
|
34 |
|
eqid |
|
35 |
|
1cnd |
|
36 |
34 35
|
fmpti |
|
37 |
36
|
a1i |
|
38 |
37
|
ffvelrnda |
|
39 |
22 24
|
mulcld |
|
40 |
22 24 25 27
|
mulne0d |
|
41 |
21 39 40
|
divcld |
|
42 |
41
|
fmpttd |
|
43 |
42
|
ffvelrnda |
|
44 |
|
oveq2 |
|
45 |
44
|
oveq1d |
|
46 |
45 44
|
oveq12d |
|
47 |
|
simpr |
|
48 |
2
|
adantr |
|
49 |
47
|
nncnd |
|
50 |
48 49
|
mulcld |
|
51 |
4
|
adantr |
|
52 |
50 51
|
addcld |
|
53 |
3
|
adantr |
|
54 |
47
|
nnne0d |
|
55 |
48 49 53 54
|
mulne0d |
|
56 |
52 50 55
|
divcld |
|
57 |
1 46 47 56
|
fvmptd3 |
|
58 |
50 51 50 55
|
divdird |
|
59 |
50 55
|
dividd |
|
60 |
59
|
oveq1d |
|
61 |
58 60
|
eqtrd |
|
62 |
16
|
eqcomd |
|
63 |
|
eqidd |
|
64 |
|
simpr |
|
65 |
64
|
oveq2d |
|
66 |
65
|
oveq2d |
|
67 |
51 50 55
|
divcld |
|
68 |
63 66 47 67
|
fvmptd |
|
69 |
68
|
eqcomd |
|
70 |
62 69
|
oveq12d |
|
71 |
57 61 70
|
3eqtrd |
|
72 |
5 6 17 20 33 38 43 71
|
climadd |
|
73 |
|
1p0e1 |
|
74 |
72 73
|
breqtrdi |
|