Metamath Proof Explorer


Theorem clim2

Description: Express the predicate: The limit of complex number sequence F is A , or F converges to A , with more general quantifier restrictions than clim . (Contributed by NM, 6-Jan-2007) (Revised by Mario Carneiro, 31-Jan-2014)

Ref Expression
Hypotheses clim2.1 Z = M
clim2.2 φ M
clim2.3 φ F V
clim2.4 φ k Z F k = B
Assertion clim2 φ F A A x + j Z k j B B A < x

Proof

Step Hyp Ref Expression
1 clim2.1 Z = M
2 clim2.2 φ M
3 clim2.3 φ F V
4 clim2.4 φ k Z F k = B
5 eqidd φ k F k = F k
6 3 5 clim φ F A A x + j k j F k F k A < x
7 1 uztrn2 j Z k j k Z
8 4 eleq1d φ k Z F k B
9 4 fvoveq1d φ k Z F k A = B A
10 9 breq1d φ k Z F k A < x B A < x
11 8 10 anbi12d φ k Z F k F k A < x B B A < x
12 7 11 sylan2 φ j Z k j F k F k A < x B B A < x
13 12 anassrs φ j Z k j F k F k A < x B B A < x
14 13 ralbidva φ j Z k j F k F k A < x k j B B A < x
15 14 rexbidva φ j Z k j F k F k A < x j Z k j B B A < x
16 1 rexuz3 M j Z k j F k F k A < x j k j F k F k A < x
17 2 16 syl φ j Z k j F k F k A < x j k j F k F k A < x
18 15 17 bitr3d φ j Z k j B B A < x j k j F k F k A < x
19 18 ralbidv φ x + j Z k j B B A < x x + j k j F k F k A < x
20 19 anbi2d φ A x + j Z k j B B A < x A x + j k j F k F k A < x
21 6 20 bitr4d φ F A A x + j Z k j B B A < x