Metamath Proof Explorer


Theorem clim2c

Description: Express the predicate F converges to A . (Contributed by NM, 24-Feb-2008) (Revised by Mario Carneiro, 31-Jan-2014)

Ref Expression
Hypotheses clim2.1 Z = M
clim2.2 φ M
clim2.3 φ F V
clim2.4 φ k Z F k = B
clim2c.5 φ A
clim2c.6 φ k Z B
Assertion clim2c φ F A x + j Z k j B A < x

Proof

Step Hyp Ref Expression
1 clim2.1 Z = M
2 clim2.2 φ M
3 clim2.3 φ F V
4 clim2.4 φ k Z F k = B
5 clim2c.5 φ A
6 clim2c.6 φ k Z B
7 5 biantrurd φ x + j Z k j B B A < x A x + j Z k j B B A < x
8 1 uztrn2 j Z k j k Z
9 6 biantrurd φ k Z B A < x B B A < x
10 8 9 sylan2 φ j Z k j B A < x B B A < x
11 10 anassrs φ j Z k j B A < x B B A < x
12 11 ralbidva φ j Z k j B A < x k j B B A < x
13 12 rexbidva φ j Z k j B A < x j Z k j B B A < x
14 13 ralbidv φ x + j Z k j B A < x x + j Z k j B B A < x
15 1 2 3 4 clim2 φ F A A x + j Z k j B B A < x
16 7 14 15 3bitr4rd φ F A x + j Z k j B A < x