Metamath Proof Explorer


Theorem clim2cf

Description: Express the predicate F converges to A . Similar to clim2 , but without the disjoint var constraint F k . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses clim2cf.nf _ k F
clim2cf.z Z = M
clim2cf.m φ M
clim2cf.f φ F V
clim2cf.fv φ k Z F k = B
clim2cf.a φ A
clim2cf.b φ k Z B
Assertion clim2cf φ F A x + j Z k j B A < x

Proof

Step Hyp Ref Expression
1 clim2cf.nf _ k F
2 clim2cf.z Z = M
3 clim2cf.m φ M
4 clim2cf.f φ F V
5 clim2cf.fv φ k Z F k = B
6 clim2cf.a φ A
7 clim2cf.b φ k Z B
8 6 biantrurd φ x + j Z k j B B A < x A x + j Z k j B B A < x
9 2 uztrn2 j Z k j k Z
10 7 biantrurd φ k Z B A < x B B A < x
11 9 10 sylan2 φ j Z k j B A < x B B A < x
12 11 anassrs φ j Z k j B A < x B B A < x
13 12 ralbidva φ j Z k j B A < x k j B B A < x
14 13 rexbidva φ j Z k j B A < x j Z k j B B A < x
15 14 ralbidv φ x + j Z k j B A < x x + j Z k j B B A < x
16 1 2 3 4 5 clim2f φ F A A x + j Z k j B B A < x
17 8 15 16 3bitr4rd φ F A x + j Z k j B A < x