Metamath Proof Explorer


Theorem clim2d

Description: The limit of complex number sequence F is eventually approximated. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses clim2d.k k φ
clim2d.f _ k F
clim2d.m φ M
clim2d.z Z = M
clim2d.c φ F A
clim2d.b φ k Z F k = B
clim2d.x φ X +
Assertion clim2d φ j Z k j B B A < X

Proof

Step Hyp Ref Expression
1 clim2d.k k φ
2 clim2d.f _ k F
3 clim2d.m φ M
4 clim2d.z Z = M
5 clim2d.c φ F A
6 clim2d.b φ k Z F k = B
7 clim2d.x φ X +
8 climrel Rel
9 8 a1i φ Rel
10 brrelex1 Rel F A F V
11 9 5 10 syl2anc φ F V
12 1 2 4 3 11 6 clim2f2 φ F A A x + j Z k j B B A < x
13 5 12 mpbid φ A x + j Z k j B B A < x
14 13 simprd φ x + j Z k j B B A < x
15 breq2 x = X B A < x B A < X
16 15 anbi2d x = X B B A < x B B A < X
17 16 ralbidv x = X k j B B A < x k j B B A < X
18 17 rexbidv x = X j Z k j B B A < x j Z k j B B A < X
19 18 rspcva X + x + j Z k j B B A < x j Z k j B B A < X
20 7 14 19 syl2anc φ j Z k j B B A < X