Metamath Proof Explorer


Theorem clim2f

Description: Express the predicate: The limit of complex number sequence F is A , or F converges to A , with more general quantifier restrictions than clim . Similar to clim2 , but without the disjoint var constraint F k . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses nf _ k F
clim2f.z Z = M
clim2f.m φ M
clim2f.f φ F V
clim2f.b φ k Z F k = B
Assertion clim2f φ F A A x + j Z k j B B A < x

Proof

Step Hyp Ref Expression
1 nf _ k F
2 clim2f.z Z = M
3 clim2f.m φ M
4 clim2f.f φ F V
5 clim2f.b φ k Z F k = B
6 eqidd φ k F k = F k
7 1 4 6 climf φ F A A x + j k j F k F k A < x
8 2 uztrn2 j Z k j k Z
9 5 eleq1d φ k Z F k B
10 5 fvoveq1d φ k Z F k A = B A
11 10 breq1d φ k Z F k A < x B A < x
12 9 11 anbi12d φ k Z F k F k A < x B B A < x
13 8 12 sylan2 φ j Z k j F k F k A < x B B A < x
14 13 anassrs φ j Z k j F k F k A < x B B A < x
15 14 ralbidva φ j Z k j F k F k A < x k j B B A < x
16 15 rexbidva φ j Z k j F k F k A < x j Z k j B B A < x
17 2 rexuz3 M j Z k j F k F k A < x j k j F k F k A < x
18 3 17 syl φ j Z k j F k F k A < x j k j F k F k A < x
19 16 18 bitr3d φ j Z k j B B A < x j k j F k F k A < x
20 19 ralbidv φ x + j Z k j B B A < x x + j k j F k F k A < x
21 20 anbi2d φ A x + j Z k j B B A < x A x + j k j F k F k A < x
22 7 21 bitr4d φ F A A x + j Z k j B B A < x