Metamath Proof Explorer


Theorem clim2f2

Description: Express the predicate: The limit of complex number sequence F is A , or F converges to A , with more general quantifier restrictions than clim . Similar to clim2 , but without the disjoint var constraint F k . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses clim2f2.p k φ
clim2f2.k _ k F
clim2f2.z Z = M
clim2f2.m φ M
clim2f2.f φ F V
clim2f2.b φ k Z F k = B
Assertion clim2f2 φ F A A x + j Z k j B B A < x

Proof

Step Hyp Ref Expression
1 clim2f2.p k φ
2 clim2f2.k _ k F
3 clim2f2.z Z = M
4 clim2f2.m φ M
5 clim2f2.f φ F V
6 clim2f2.b φ k Z F k = B
7 eqidd φ k F k = F k
8 1 2 5 7 climf2 φ F A A x + j k j F k F k A < x
9 nfv k j Z
10 1 9 nfan k φ j Z
11 3 uztrn2 j Z k j k Z
12 6 eleq1d φ k Z F k B
13 6 fvoveq1d φ k Z F k A = B A
14 13 breq1d φ k Z F k A < x B A < x
15 12 14 anbi12d φ k Z F k F k A < x B B A < x
16 11 15 sylan2 φ j Z k j F k F k A < x B B A < x
17 16 anassrs φ j Z k j F k F k A < x B B A < x
18 10 17 ralbida φ j Z k j F k F k A < x k j B B A < x
19 18 rexbidva φ j Z k j F k F k A < x j Z k j B B A < x
20 3 rexuz3 M j Z k j F k F k A < x j k j F k F k A < x
21 4 20 syl φ j Z k j F k F k A < x j k j F k F k A < x
22 19 21 bitr3d φ j Z k j B B A < x j k j F k F k A < x
23 22 ralbidv φ x + j Z k j B B A < x x + j k j F k F k A < x
24 23 anbi2d φ A x + j Z k j B B A < x A x + j k j F k F k A < x
25 8 24 bitr4d φ F A A x + j Z k j B B A < x