Metamath Proof Explorer


Theorem clim2prod

Description: The limit of an infinite product with an initial segment added. (Contributed by Scott Fenton, 18-Dec-2017)

Ref Expression
Hypotheses clim2prod.1 Z = M
clim2prod.2 φ N Z
clim2prod.3 φ k Z F k
clim2prod.4 φ seq N + 1 × F A
Assertion clim2prod φ seq M × F seq M × F N A

Proof

Step Hyp Ref Expression
1 clim2prod.1 Z = M
2 clim2prod.2 φ N Z
3 clim2prod.3 φ k Z F k
4 clim2prod.4 φ seq N + 1 × F A
5 eqid N + 1 = N + 1
6 uzssz M
7 1 6 eqsstri Z
8 7 2 sselid φ N
9 8 peano2zd φ N + 1
10 2 1 eleqtrdi φ N M
11 eluzel2 N M M
12 10 11 syl φ M
13 1 12 3 prodf φ seq M × F : Z
14 13 2 ffvelrnd φ seq M × F N
15 seqex seq M × F V
16 15 a1i φ seq M × F V
17 peano2uz N M N + 1 M
18 uzss N + 1 M N + 1 M
19 10 17 18 3syl φ N + 1 M
20 19 1 sseqtrrdi φ N + 1 Z
21 20 sselda φ k N + 1 k Z
22 21 3 syldan φ k N + 1 F k
23 5 9 22 prodf φ seq N + 1 × F : N + 1
24 23 ffvelrnda φ k N + 1 seq N + 1 × F k
25 fveq2 x = N + 1 seq M × F x = seq M × F N + 1
26 fveq2 x = N + 1 seq N + 1 × F x = seq N + 1 × F N + 1
27 26 oveq2d x = N + 1 seq M × F N seq N + 1 × F x = seq M × F N seq N + 1 × F N + 1
28 25 27 eqeq12d x = N + 1 seq M × F x = seq M × F N seq N + 1 × F x seq M × F N + 1 = seq M × F N seq N + 1 × F N + 1
29 28 imbi2d x = N + 1 φ seq M × F x = seq M × F N seq N + 1 × F x φ seq M × F N + 1 = seq M × F N seq N + 1 × F N + 1
30 fveq2 x = n seq M × F x = seq M × F n
31 fveq2 x = n seq N + 1 × F x = seq N + 1 × F n
32 31 oveq2d x = n seq M × F N seq N + 1 × F x = seq M × F N seq N + 1 × F n
33 30 32 eqeq12d x = n seq M × F x = seq M × F N seq N + 1 × F x seq M × F n = seq M × F N seq N + 1 × F n
34 33 imbi2d x = n φ seq M × F x = seq M × F N seq N + 1 × F x φ seq M × F n = seq M × F N seq N + 1 × F n
35 fveq2 x = n + 1 seq M × F x = seq M × F n + 1
36 fveq2 x = n + 1 seq N + 1 × F x = seq N + 1 × F n + 1
37 36 oveq2d x = n + 1 seq M × F N seq N + 1 × F x = seq M × F N seq N + 1 × F n + 1
38 35 37 eqeq12d x = n + 1 seq M × F x = seq M × F N seq N + 1 × F x seq M × F n + 1 = seq M × F N seq N + 1 × F n + 1
39 38 imbi2d x = n + 1 φ seq M × F x = seq M × F N seq N + 1 × F x φ seq M × F n + 1 = seq M × F N seq N + 1 × F n + 1
40 fveq2 x = k seq M × F x = seq M × F k
41 fveq2 x = k seq N + 1 × F x = seq N + 1 × F k
42 41 oveq2d x = k seq M × F N seq N + 1 × F x = seq M × F N seq N + 1 × F k
43 40 42 eqeq12d x = k seq M × F x = seq M × F N seq N + 1 × F x seq M × F k = seq M × F N seq N + 1 × F k
44 43 imbi2d x = k φ seq M × F x = seq M × F N seq N + 1 × F x φ seq M × F k = seq M × F N seq N + 1 × F k
45 10 adantr φ N + 1 N M
46 seqp1 N M seq M × F N + 1 = seq M × F N F N + 1
47 45 46 syl φ N + 1 seq M × F N + 1 = seq M × F N F N + 1
48 seq1 N + 1 seq N + 1 × F N + 1 = F N + 1
49 48 adantl φ N + 1 seq N + 1 × F N + 1 = F N + 1
50 49 oveq2d φ N + 1 seq M × F N seq N + 1 × F N + 1 = seq M × F N F N + 1
51 47 50 eqtr4d φ N + 1 seq M × F N + 1 = seq M × F N seq N + 1 × F N + 1
52 51 expcom N + 1 φ seq M × F N + 1 = seq M × F N seq N + 1 × F N + 1
53 19 sselda φ n N + 1 n M
54 seqp1 n M seq M × F n + 1 = seq M × F n F n + 1
55 53 54 syl φ n N + 1 seq M × F n + 1 = seq M × F n F n + 1
56 55 adantr φ n N + 1 seq M × F n = seq M × F N seq N + 1 × F n seq M × F n + 1 = seq M × F n F n + 1
57 oveq1 seq M × F n = seq M × F N seq N + 1 × F n seq M × F n F n + 1 = seq M × F N seq N + 1 × F n F n + 1
58 57 adantl φ n N + 1 seq M × F n = seq M × F N seq N + 1 × F n seq M × F n F n + 1 = seq M × F N seq N + 1 × F n F n + 1
59 14 adantr φ n N + 1 seq M × F N
60 23 ffvelrnda φ n N + 1 seq N + 1 × F n
61 peano2uz n M n + 1 M
62 61 1 eleqtrrdi n M n + 1 Z
63 53 62 syl φ n N + 1 n + 1 Z
64 3 ralrimiva φ k Z F k
65 fveq2 k = n + 1 F k = F n + 1
66 65 eleq1d k = n + 1 F k F n + 1
67 66 rspcv n + 1 Z k Z F k F n + 1
68 64 67 mpan9 φ n + 1 Z F n + 1
69 63 68 syldan φ n N + 1 F n + 1
70 59 60 69 mulassd φ n N + 1 seq M × F N seq N + 1 × F n F n + 1 = seq M × F N seq N + 1 × F n F n + 1
71 70 adantr φ n N + 1 seq M × F n = seq M × F N seq N + 1 × F n seq M × F N seq N + 1 × F n F n + 1 = seq M × F N seq N + 1 × F n F n + 1
72 seqp1 n N + 1 seq N + 1 × F n + 1 = seq N + 1 × F n F n + 1
73 72 adantl φ n N + 1 seq N + 1 × F n + 1 = seq N + 1 × F n F n + 1
74 73 oveq2d φ n N + 1 seq M × F N seq N + 1 × F n + 1 = seq M × F N seq N + 1 × F n F n + 1
75 74 adantr φ n N + 1 seq M × F n = seq M × F N seq N + 1 × F n seq M × F N seq N + 1 × F n + 1 = seq M × F N seq N + 1 × F n F n + 1
76 71 75 eqtr4d φ n N + 1 seq M × F n = seq M × F N seq N + 1 × F n seq M × F N seq N + 1 × F n F n + 1 = seq M × F N seq N + 1 × F n + 1
77 56 58 76 3eqtrd φ n N + 1 seq M × F n = seq M × F N seq N + 1 × F n seq M × F n + 1 = seq M × F N seq N + 1 × F n + 1
78 77 exp31 φ n N + 1 seq M × F n = seq M × F N seq N + 1 × F n seq M × F n + 1 = seq M × F N seq N + 1 × F n + 1
79 78 com12 n N + 1 φ seq M × F n = seq M × F N seq N + 1 × F n seq M × F n + 1 = seq M × F N seq N + 1 × F n + 1
80 79 a2d n N + 1 φ seq M × F n = seq M × F N seq N + 1 × F n φ seq M × F n + 1 = seq M × F N seq N + 1 × F n + 1
81 29 34 39 44 52 80 uzind4 k N + 1 φ seq M × F k = seq M × F N seq N + 1 × F k
82 81 impcom φ k N + 1 seq M × F k = seq M × F N seq N + 1 × F k
83 5 9 4 14 16 24 82 climmulc2 φ seq M × F seq M × F N A