Step |
Hyp |
Ref |
Expression |
1 |
|
clim2prod.1 |
|
2 |
|
clim2prod.2 |
|
3 |
|
clim2prod.3 |
|
4 |
|
clim2prod.4 |
|
5 |
|
eqid |
|
6 |
|
uzssz |
|
7 |
1 6
|
eqsstri |
|
8 |
7 2
|
sselid |
|
9 |
8
|
peano2zd |
|
10 |
2 1
|
eleqtrdi |
|
11 |
|
eluzel2 |
|
12 |
10 11
|
syl |
|
13 |
1 12 3
|
prodf |
|
14 |
13 2
|
ffvelrnd |
|
15 |
|
seqex |
|
16 |
15
|
a1i |
|
17 |
|
peano2uz |
|
18 |
|
uzss |
|
19 |
10 17 18
|
3syl |
|
20 |
19 1
|
sseqtrrdi |
|
21 |
20
|
sselda |
|
22 |
21 3
|
syldan |
|
23 |
5 9 22
|
prodf |
|
24 |
23
|
ffvelrnda |
|
25 |
|
fveq2 |
|
26 |
|
fveq2 |
|
27 |
26
|
oveq2d |
|
28 |
25 27
|
eqeq12d |
|
29 |
28
|
imbi2d |
|
30 |
|
fveq2 |
|
31 |
|
fveq2 |
|
32 |
31
|
oveq2d |
|
33 |
30 32
|
eqeq12d |
|
34 |
33
|
imbi2d |
|
35 |
|
fveq2 |
|
36 |
|
fveq2 |
|
37 |
36
|
oveq2d |
|
38 |
35 37
|
eqeq12d |
|
39 |
38
|
imbi2d |
|
40 |
|
fveq2 |
|
41 |
|
fveq2 |
|
42 |
41
|
oveq2d |
|
43 |
40 42
|
eqeq12d |
|
44 |
43
|
imbi2d |
|
45 |
10
|
adantr |
|
46 |
|
seqp1 |
|
47 |
45 46
|
syl |
|
48 |
|
seq1 |
|
49 |
48
|
adantl |
|
50 |
49
|
oveq2d |
|
51 |
47 50
|
eqtr4d |
|
52 |
51
|
expcom |
|
53 |
19
|
sselda |
|
54 |
|
seqp1 |
|
55 |
53 54
|
syl |
|
56 |
55
|
adantr |
|
57 |
|
oveq1 |
|
58 |
57
|
adantl |
|
59 |
14
|
adantr |
|
60 |
23
|
ffvelrnda |
|
61 |
|
peano2uz |
|
62 |
61 1
|
eleqtrrdi |
|
63 |
53 62
|
syl |
|
64 |
3
|
ralrimiva |
|
65 |
|
fveq2 |
|
66 |
65
|
eleq1d |
|
67 |
66
|
rspcv |
|
68 |
64 67
|
mpan9 |
|
69 |
63 68
|
syldan |
|
70 |
59 60 69
|
mulassd |
|
71 |
70
|
adantr |
|
72 |
|
seqp1 |
|
73 |
72
|
adantl |
|
74 |
73
|
oveq2d |
|
75 |
74
|
adantr |
|
76 |
71 75
|
eqtr4d |
|
77 |
56 58 76
|
3eqtrd |
|
78 |
77
|
exp31 |
|
79 |
78
|
com12 |
|
80 |
79
|
a2d |
|
81 |
29 34 39 44 52 80
|
uzind4 |
|
82 |
81
|
impcom |
|
83 |
5 9 4 14 16 24 82
|
climmulc2 |
|