| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clim2prod.1 |
|
| 2 |
|
clim2prod.2 |
|
| 3 |
|
clim2prod.3 |
|
| 4 |
|
clim2prod.4 |
|
| 5 |
|
eqid |
|
| 6 |
|
uzssz |
|
| 7 |
1 6
|
eqsstri |
|
| 8 |
7 2
|
sselid |
|
| 9 |
8
|
peano2zd |
|
| 10 |
2 1
|
eleqtrdi |
|
| 11 |
|
eluzel2 |
|
| 12 |
10 11
|
syl |
|
| 13 |
1 12 3
|
prodf |
|
| 14 |
13 2
|
ffvelcdmd |
|
| 15 |
|
seqex |
|
| 16 |
15
|
a1i |
|
| 17 |
|
peano2uz |
|
| 18 |
|
uzss |
|
| 19 |
10 17 18
|
3syl |
|
| 20 |
19 1
|
sseqtrrdi |
|
| 21 |
20
|
sselda |
|
| 22 |
21 3
|
syldan |
|
| 23 |
5 9 22
|
prodf |
|
| 24 |
23
|
ffvelcdmda |
|
| 25 |
|
fveq2 |
|
| 26 |
|
fveq2 |
|
| 27 |
26
|
oveq2d |
|
| 28 |
25 27
|
eqeq12d |
|
| 29 |
28
|
imbi2d |
|
| 30 |
|
fveq2 |
|
| 31 |
|
fveq2 |
|
| 32 |
31
|
oveq2d |
|
| 33 |
30 32
|
eqeq12d |
|
| 34 |
33
|
imbi2d |
|
| 35 |
|
fveq2 |
|
| 36 |
|
fveq2 |
|
| 37 |
36
|
oveq2d |
|
| 38 |
35 37
|
eqeq12d |
|
| 39 |
38
|
imbi2d |
|
| 40 |
|
fveq2 |
|
| 41 |
|
fveq2 |
|
| 42 |
41
|
oveq2d |
|
| 43 |
40 42
|
eqeq12d |
|
| 44 |
43
|
imbi2d |
|
| 45 |
10
|
adantr |
|
| 46 |
|
seqp1 |
|
| 47 |
45 46
|
syl |
|
| 48 |
|
seq1 |
|
| 49 |
48
|
adantl |
|
| 50 |
49
|
oveq2d |
|
| 51 |
47 50
|
eqtr4d |
|
| 52 |
51
|
expcom |
|
| 53 |
19
|
sselda |
|
| 54 |
|
seqp1 |
|
| 55 |
53 54
|
syl |
|
| 56 |
55
|
adantr |
|
| 57 |
|
oveq1 |
|
| 58 |
57
|
adantl |
|
| 59 |
14
|
adantr |
|
| 60 |
23
|
ffvelcdmda |
|
| 61 |
|
peano2uz |
|
| 62 |
61 1
|
eleqtrrdi |
|
| 63 |
53 62
|
syl |
|
| 64 |
3
|
ralrimiva |
|
| 65 |
|
fveq2 |
|
| 66 |
65
|
eleq1d |
|
| 67 |
66
|
rspcv |
|
| 68 |
64 67
|
mpan9 |
|
| 69 |
63 68
|
syldan |
|
| 70 |
59 60 69
|
mulassd |
|
| 71 |
70
|
adantr |
|
| 72 |
|
seqp1 |
|
| 73 |
72
|
adantl |
|
| 74 |
73
|
oveq2d |
|
| 75 |
74
|
adantr |
|
| 76 |
71 75
|
eqtr4d |
|
| 77 |
56 58 76
|
3eqtrd |
|
| 78 |
77
|
exp31 |
|
| 79 |
78
|
com12 |
|
| 80 |
79
|
a2d |
|
| 81 |
29 34 39 44 52 80
|
uzind4 |
|
| 82 |
81
|
impcom |
|
| 83 |
5 9 4 14 16 24 82
|
climmulc2 |
|