Metamath Proof Explorer


Theorem clim2ser

Description: The limit of an infinite series with an initial segment removed. (Contributed by Paul Chapman, 9-Feb-2008) (Revised by Mario Carneiro, 1-Feb-2014)

Ref Expression
Hypotheses clim2ser.1 Z = M
clim2ser.2 φ N Z
clim2ser.4 φ k Z F k
clim2ser.5 φ seq M + F A
Assertion clim2ser φ seq N + 1 + F A seq M + F N

Proof

Step Hyp Ref Expression
1 clim2ser.1 Z = M
2 clim2ser.2 φ N Z
3 clim2ser.4 φ k Z F k
4 clim2ser.5 φ seq M + F A
5 eqid N + 1 = N + 1
6 2 1 eleqtrdi φ N M
7 peano2uz N M N + 1 M
8 6 7 syl φ N + 1 M
9 eluzelz N + 1 M N + 1
10 8 9 syl φ N + 1
11 eluzel2 N M M
12 6 11 syl φ M
13 1 12 3 serf φ seq M + F : Z
14 13 2 ffvelrnd φ seq M + F N
15 seqex seq N + 1 + F V
16 15 a1i φ seq N + 1 + F V
17 13 adantr φ j N + 1 seq M + F : Z
18 8 1 eleqtrrdi φ N + 1 Z
19 1 uztrn2 N + 1 Z j N + 1 j Z
20 18 19 sylan φ j N + 1 j Z
21 17 20 ffvelrnd φ j N + 1 seq M + F j
22 addcl k x k + x
23 22 adantl φ j N + 1 k x k + x
24 addass k x y k + x + y = k + x + y
25 24 adantl φ j N + 1 k x y k + x + y = k + x + y
26 simpr φ j N + 1 j N + 1
27 6 adantr φ j N + 1 N M
28 elfzuz k M j k M
29 28 1 eleqtrrdi k M j k Z
30 29 3 sylan2 φ k M j F k
31 30 adantlr φ j N + 1 k M j F k
32 23 25 26 27 31 seqsplit φ j N + 1 seq M + F j = seq M + F N + seq N + 1 + F j
33 32 oveq1d φ j N + 1 seq M + F j seq M + F N = seq M + F N + seq N + 1 + F j - seq M + F N
34 14 adantr φ j N + 1 seq M + F N
35 1 uztrn2 N + 1 Z k N + 1 k Z
36 18 35 sylan φ k N + 1 k Z
37 36 3 syldan φ k N + 1 F k
38 5 10 37 serf φ seq N + 1 + F : N + 1
39 38 ffvelrnda φ j N + 1 seq N + 1 + F j
40 34 39 pncan2d φ j N + 1 seq M + F N + seq N + 1 + F j - seq M + F N = seq N + 1 + F j
41 33 40 eqtr2d φ j N + 1 seq N + 1 + F j = seq M + F j seq M + F N
42 5 10 4 14 16 21 41 climsubc1 φ seq N + 1 + F A seq M + F N