Metamath Proof Explorer


Theorem climabs0

Description: Convergence to zero of the absolute value is equivalent to convergence to zero. (Contributed by NM, 8-Jul-2008) (Revised by Mario Carneiro, 31-Jan-2014)

Ref Expression
Hypotheses climabs0.1 Z = M
climabs0.2 φ M
climabs0.3 φ F V
climabs0.4 φ G W
climabs0.5 φ k Z F k
climabs0.6 φ k Z G k = F k
Assertion climabs0 φ F 0 G 0

Proof

Step Hyp Ref Expression
1 climabs0.1 Z = M
2 climabs0.2 φ M
3 climabs0.3 φ F V
4 climabs0.4 φ G W
5 climabs0.5 φ k Z F k
6 climabs0.6 φ k Z G k = F k
7 1 uztrn2 j Z k j k Z
8 absidm F k F k = F k
9 5 8 syl φ k Z F k = F k
10 9 breq1d φ k Z F k < x F k < x
11 7 10 sylan2 φ j Z k j F k < x F k < x
12 11 anassrs φ j Z k j F k < x F k < x
13 12 ralbidva φ j Z k j F k < x k j F k < x
14 13 rexbidva φ j Z k j F k < x j Z k j F k < x
15 14 ralbidv φ x + j Z k j F k < x x + j Z k j F k < x
16 5 abscld φ k Z F k
17 16 recnd φ k Z F k
18 1 2 4 6 17 clim0c φ G 0 x + j Z k j F k < x
19 eqidd φ k Z F k = F k
20 1 2 3 19 5 clim0c φ F 0 x + j Z k j F k < x
21 15 18 20 3bitr4rd φ F 0 G 0