Metamath Proof Explorer


Theorem climaddc2

Description: Limit of a constant C added to each term of a sequence. (Contributed by NM, 24-Sep-2005) (Revised by Mario Carneiro, 3-Feb-2014)

Ref Expression
Hypotheses climadd.1 Z = M
climadd.2 φ M
climadd.4 φ F A
climaddc1.5 φ C
climaddc1.6 φ G W
climaddc1.7 φ k Z F k
climaddc2.h φ k Z G k = C + F k
Assertion climaddc2 φ G C + A

Proof

Step Hyp Ref Expression
1 climadd.1 Z = M
2 climadd.2 φ M
3 climadd.4 φ F A
4 climaddc1.5 φ C
5 climaddc1.6 φ G W
6 climaddc1.7 φ k Z F k
7 climaddc2.h φ k Z G k = C + F k
8 4 adantr φ k Z C
9 8 6 7 comraddd φ k Z G k = F k + C
10 1 2 3 4 5 6 9 climaddc1 φ G A + C
11 climcl F A A
12 3 11 syl φ A
13 12 4 addcomd φ A + C = C + A
14 10 13 breqtrd φ G C + A