Metamath Proof Explorer


Theorem climaddf

Description: A version of climadd using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses climaddf.1 k φ
climaddf.2 _ k F
climaddf.3 _ k G
climaddf.4 _ k H
climaddf.5 Z = M
climaddf.6 φ M
climaddf.7 φ F A
climaddf.8 φ H X
climaddf.9 φ G B
climaddf.10 φ k Z F k
climaddf.11 φ k Z G k
climaddf.12 φ k Z H k = F k + G k
Assertion climaddf φ H A + B

Proof

Step Hyp Ref Expression
1 climaddf.1 k φ
2 climaddf.2 _ k F
3 climaddf.3 _ k G
4 climaddf.4 _ k H
5 climaddf.5 Z = M
6 climaddf.6 φ M
7 climaddf.7 φ F A
8 climaddf.8 φ H X
9 climaddf.9 φ G B
10 climaddf.10 φ k Z F k
11 climaddf.11 φ k Z G k
12 climaddf.12 φ k Z H k = F k + G k
13 nfv k j Z
14 1 13 nfan k φ j Z
15 nfcv _ k j
16 2 15 nffv _ k F j
17 16 nfel1 k F j
18 14 17 nfim k φ j Z F j
19 eleq1w k = j k Z j Z
20 19 anbi2d k = j φ k Z φ j Z
21 fveq2 k = j F k = F j
22 21 eleq1d k = j F k F j
23 20 22 imbi12d k = j φ k Z F k φ j Z F j
24 18 23 10 chvarfv φ j Z F j
25 3 15 nffv _ k G j
26 25 nfel1 k G j
27 14 26 nfim k φ j Z G j
28 fveq2 k = j G k = G j
29 28 eleq1d k = j G k G j
30 20 29 imbi12d k = j φ k Z G k φ j Z G j
31 27 30 11 chvarfv φ j Z G j
32 4 15 nffv _ k H j
33 nfcv _ k +
34 16 33 25 nfov _ k F j + G j
35 32 34 nfeq k H j = F j + G j
36 14 35 nfim k φ j Z H j = F j + G j
37 fveq2 k = j H k = H j
38 21 28 oveq12d k = j F k + G k = F j + G j
39 37 38 eqeq12d k = j H k = F k + G k H j = F j + G j
40 20 39 imbi12d k = j φ k Z H k = F k + G k φ j Z H j = F j + G j
41 36 40 12 chvarfv φ j Z H j = F j + G j
42 5 6 7 8 9 24 31 41 climadd φ H A + B