Metamath Proof Explorer


Theorem climbdd

Description: A converging sequence of complex numbers is bounded. (Contributed by Mario Carneiro, 9-Jul-2017)

Ref Expression
Hypothesis climcau.1 Z = M
Assertion climbdd M F dom k Z F k x k Z F k x

Proof

Step Hyp Ref Expression
1 climcau.1 Z = M
2 simp3 M F dom k Z F k k Z F k
3 1 climcau M F dom y + j Z k j F k F j < y
4 3 3adant3 M F dom k Z F k y + j Z k j F k F j < y
5 1 caubnd k Z F k y + j Z k j F k F j < y x k Z F k < x
6 2 4 5 syl2anc M F dom k Z F k x k Z F k < x
7 r19.26 k Z F k F k < x k Z F k k Z F k < x
8 simpr M F dom x k Z F k F k
9 8 abscld M F dom x k Z F k F k
10 simpllr M F dom x k Z F k x
11 ltle F k x F k < x F k x
12 9 10 11 syl2anc M F dom x k Z F k F k < x F k x
13 12 expimpd M F dom x k Z F k F k < x F k x
14 13 ralimdva M F dom x k Z F k F k < x k Z F k x
15 7 14 syl5bir M F dom x k Z F k k Z F k < x k Z F k x
16 15 exp4b M F dom x k Z F k k Z F k < x k Z F k x
17 16 com23 M F dom k Z F k x k Z F k < x k Z F k x
18 17 3impia M F dom k Z F k x k Z F k < x k Z F k x
19 18 reximdvai M F dom k Z F k x k Z F k < x x k Z F k x
20 6 19 mpd M F dom k Z F k x k Z F k x