Metamath Proof Explorer


Theorem climbddf

Description: A converging sequence of complex numbers is bounded. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses climbddf.1 _ k F
climbddf.2 Z = M
Assertion climbddf M F dom k Z F k x k Z F k x

Proof

Step Hyp Ref Expression
1 climbddf.1 _ k F
2 climbddf.2 Z = M
3 simp1 M F dom k Z F k M
4 simp2 M F dom k Z F k F dom
5 nfv j F k
6 nfcv _ k j
7 1 6 nffv _ k F j
8 nfcv _ k
9 7 8 nfel k F j
10 fveq2 k = j F k = F j
11 10 eleq1d k = j F k F j
12 5 9 11 cbvralw k Z F k j Z F j
13 12 biimpi k Z F k j Z F j
14 13 3ad2ant3 M F dom k Z F k j Z F j
15 2 climbdd M F dom j Z F j x j Z F j x
16 3 4 14 15 syl3anc M F dom k Z F k x j Z F j x
17 nfcv _ k abs
18 17 7 nffv _ k F j
19 nfcv _ k
20 nfcv _ k x
21 18 19 20 nfbr k F j x
22 nfv j F k x
23 2fveq3 j = k F j = F k
24 23 breq1d j = k F j x F k x
25 21 22 24 cbvralw j Z F j x k Z F k x
26 25 rexbii x j Z F j x x k Z F k x
27 16 26 sylib M F dom k Z F k x k Z F k x