Metamath Proof Explorer


Theorem climcn1lem

Description: The limit of a continuous function, theorem form. (Contributed by Mario Carneiro, 9-Feb-2014)

Ref Expression
Hypotheses climcn1lem.1 Z = M
climcn1lem.2 φ F A
climcn1lem.4 φ G W
climcn1lem.5 φ M
climcn1lem.6 φ k Z F k
climcn1lem.7 H :
climcn1lem.8 A x + y + z z A < y H z H A < x
climcn1lem.9 φ k Z G k = H F k
Assertion climcn1lem φ G H A

Proof

Step Hyp Ref Expression
1 climcn1lem.1 Z = M
2 climcn1lem.2 φ F A
3 climcn1lem.4 φ G W
4 climcn1lem.5 φ M
5 climcn1lem.6 φ k Z F k
6 climcn1lem.7 H :
7 climcn1lem.8 A x + y + z z A < y H z H A < x
8 climcn1lem.9 φ k Z G k = H F k
9 climcl F A A
10 2 9 syl φ A
11 6 ffvelrni z H z
12 11 adantl φ z H z
13 10 7 sylan φ x + y + z z A < y H z H A < x
14 1 4 10 12 2 3 13 5 8 climcn1 φ G H A