Metamath Proof Explorer


Theorem climcncf

Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 7-Apr-2015)

Ref Expression
Hypotheses climcncf.1 Z = M
climcncf.2 φ M
climcncf.4 φ F : A cn B
climcncf.5 φ G : Z A
climcncf.6 φ G D
climcncf.7 φ D A
Assertion climcncf φ F G F D

Proof

Step Hyp Ref Expression
1 climcncf.1 Z = M
2 climcncf.2 φ M
3 climcncf.4 φ F : A cn B
4 climcncf.5 φ G : Z A
5 climcncf.6 φ G D
6 climcncf.7 φ D A
7 cncff F : A cn B F : A B
8 3 7 syl φ F : A B
9 8 ffvelrnda φ z A F z B
10 cncfrss2 F : A cn B B
11 3 10 syl φ B
12 11 sselda φ F z B F z
13 9 12 syldan φ z A F z
14 1 fvexi Z V
15 fex G : Z A Z V G V
16 4 14 15 sylancl φ G V
17 coexg F : A cn B G V F G V
18 3 16 17 syl2anc φ F G V
19 cncfi F : A cn B D A x + y + z A z D < y F z F D < x
20 19 3expia F : A cn B D A x + y + z A z D < y F z F D < x
21 3 6 20 syl2anc φ x + y + z A z D < y F z F D < x
22 21 imp φ x + y + z A z D < y F z F D < x
23 4 ffvelrnda φ k Z G k A
24 fvco3 G : Z A k Z F G k = F G k
25 4 24 sylan φ k Z F G k = F G k
26 1 2 6 13 5 18 22 23 25 climcn1 φ F G F D