Metamath Proof Explorer


Theorem climcnds

Description: The Cauchy condensation test. If a ( k ) is a decreasing sequence of nonnegative terms, then sum_ k e. NN a ( k ) converges iff sum_ n e. NN0 2 ^ n x. a ( 2 ^ n ) converges. (Contributed by Mario Carneiro, 18-Jul-2014) (Proof shortened by AV, 10-Jul-2022)

Ref Expression
Hypotheses climcnds.1 φ k F k
climcnds.2 φ k 0 F k
climcnds.3 φ k F k + 1 F k
climcnds.4 φ n 0 G n = 2 n F 2 n
Assertion climcnds φ seq 1 + F dom seq 0 + G dom

Proof

Step Hyp Ref Expression
1 climcnds.1 φ k F k
2 climcnds.2 φ k 0 F k
3 climcnds.3 φ k F k + 1 F k
4 climcnds.4 φ n 0 G n = 2 n F 2 n
5 nnuz = 1
6 1zzd φ seq 1 + F dom 1
7 1zzd φ 1
8 nnnn0 n n 0
9 2nn 2
10 simpr φ n 0 n 0
11 nnexpcl 2 n 0 2 n
12 9 10 11 sylancr φ n 0 2 n
13 12 nnred φ n 0 2 n
14 fveq2 k = 2 n F k = F 2 n
15 14 eleq1d k = 2 n F k F 2 n
16 1 ralrimiva φ k F k
17 16 adantr φ n 0 k F k
18 15 17 12 rspcdva φ n 0 F 2 n
19 13 18 remulcld φ n 0 2 n F 2 n
20 4 19 eqeltrd φ n 0 G n
21 8 20 sylan2 φ n G n
22 5 7 21 serfre φ seq 1 + G :
23 22 adantr φ seq 1 + F dom seq 1 + G :
24 simpr φ j j
25 24 5 eleqtrdi φ j j 1
26 nnz j j
27 26 adantl φ j j
28 uzid j j j
29 peano2uz j j j + 1 j
30 27 28 29 3syl φ j j + 1 j
31 simpl φ j φ
32 elfznn n 1 j + 1 n
33 31 32 21 syl2an φ j n 1 j + 1 G n
34 simpll φ j n j + 1 j + 1 φ
35 elfz1eq n j + 1 j + 1 n = j + 1
36 35 adantl φ j n j + 1 j + 1 n = j + 1
37 nnnn0 j j 0
38 peano2nn0 j 0 j + 1 0
39 37 38 syl j j + 1 0
40 39 ad2antlr φ j n j + 1 j + 1 j + 1 0
41 36 40 eqeltrd φ j n j + 1 j + 1 n 0
42 12 nnnn0d φ n 0 2 n 0
43 42 nn0ge0d φ n 0 0 2 n
44 14 breq2d k = 2 n 0 F k 0 F 2 n
45 2 ralrimiva φ k 0 F k
46 45 adantr φ n 0 k 0 F k
47 44 46 12 rspcdva φ n 0 0 F 2 n
48 13 18 43 47 mulge0d φ n 0 0 2 n F 2 n
49 48 4 breqtrrd φ n 0 0 G n
50 34 41 49 syl2anc φ j n j + 1 j + 1 0 G n
51 25 30 33 50 sermono φ j seq 1 + G j seq 1 + G j + 1
52 51 adantlr φ seq 1 + F dom j seq 1 + G j seq 1 + G j + 1
53 2re 2
54 eqidd φ seq 1 + F dom k F k = F k
55 1 adantlr φ seq 1 + F dom k F k
56 simpr φ seq 1 + F dom seq 1 + F dom
57 5 6 54 55 56 isumrecl φ seq 1 + F dom k F k
58 remulcl 2 k F k 2 k F k
59 53 57 58 sylancr φ seq 1 + F dom 2 k F k
60 23 ffvelrnda φ seq 1 + F dom j seq 1 + G j
61 5 7 1 serfre φ seq 1 + F :
62 61 ad2antrr φ seq 1 + F dom j seq 1 + F :
63 37 adantl φ seq 1 + F dom j j 0
64 nnexpcl 2 j 0 2 j
65 9 63 64 sylancr φ seq 1 + F dom j 2 j
66 62 65 ffvelrnd φ seq 1 + F dom j seq 1 + F 2 j
67 remulcl 2 seq 1 + F 2 j 2 seq 1 + F 2 j
68 53 66 67 sylancr φ seq 1 + F dom j 2 seq 1 + F 2 j
69 59 adantr φ seq 1 + F dom j 2 k F k
70 1 2 3 4 climcndslem2 φ j seq 1 + G j 2 seq 1 + F 2 j
71 70 adantlr φ seq 1 + F dom j seq 1 + G j 2 seq 1 + F 2 j
72 eqidd φ seq 1 + F dom j k 1 2 j F k = F k
73 65 5 eleqtrdi φ seq 1 + F dom j 2 j 1
74 simpll φ seq 1 + F dom j φ
75 elfznn k 1 2 j k
76 1 recnd φ k F k
77 74 75 76 syl2an φ seq 1 + F dom j k 1 2 j F k
78 72 73 77 fsumser φ seq 1 + F dom j k = 1 2 j F k = seq 1 + F 2 j
79 1zzd φ seq 1 + F dom j 1
80 fzfid φ seq 1 + F dom j 1 2 j Fin
81 75 ssriv 1 2 j
82 81 a1i φ seq 1 + F dom j 1 2 j
83 eqidd φ seq 1 + F dom j k F k = F k
84 1 ad4ant14 φ seq 1 + F dom j k F k
85 2 ad4ant14 φ seq 1 + F dom j k 0 F k
86 simplr φ seq 1 + F dom j seq 1 + F dom
87 5 79 80 82 83 84 85 86 isumless φ seq 1 + F dom j k = 1 2 j F k k F k
88 78 87 eqbrtrrd φ seq 1 + F dom j seq 1 + F 2 j k F k
89 57 adantr φ seq 1 + F dom j k F k
90 2rp 2 +
91 90 a1i φ seq 1 + F dom j 2 +
92 66 89 91 lemul2d φ seq 1 + F dom j seq 1 + F 2 j k F k 2 seq 1 + F 2 j 2 k F k
93 88 92 mpbid φ seq 1 + F dom j 2 seq 1 + F 2 j 2 k F k
94 60 68 69 71 93 letrd φ seq 1 + F dom j seq 1 + G j 2 k F k
95 94 ralrimiva φ seq 1 + F dom j seq 1 + G j 2 k F k
96 brralrspcev 2 k F k j seq 1 + G j 2 k F k x j seq 1 + G j x
97 59 95 96 syl2anc φ seq 1 + F dom x j seq 1 + G j x
98 5 6 23 52 97 climsup φ seq 1 + F dom seq 1 + G sup ran seq 1 + G <
99 climrel Rel
100 99 releldmi seq 1 + G sup ran seq 1 + G < seq 1 + G dom
101 98 100 syl φ seq 1 + F dom seq 1 + G dom
102 nn0uz 0 = 0
103 1nn0 1 0
104 103 a1i φ 1 0
105 20 recnd φ n 0 G n
106 102 104 105 iserex φ seq 0 + G dom seq 1 + G dom
107 106 biimpar φ seq 1 + G dom seq 0 + G dom
108 101 107 syldan φ seq 1 + F dom seq 0 + G dom
109 1zzd φ seq 0 + G dom 1
110 61 adantr φ seq 0 + G dom seq 1 + F :
111 elfznn k 1 j + 1 k
112 31 111 1 syl2an φ j k 1 j + 1 F k
113 simpll φ j k j + 1 j + 1 φ
114 peano2nn j j + 1
115 114 adantl φ j j + 1
116 elfz1eq k j + 1 j + 1 k = j + 1
117 eleq1 k = j + 1 k j + 1
118 117 biimparc j + 1 k = j + 1 k
119 115 116 118 syl2an φ j k j + 1 j + 1 k
120 113 119 2 syl2anc φ j k j + 1 j + 1 0 F k
121 25 30 112 120 sermono φ j seq 1 + F j seq 1 + F j + 1
122 121 adantlr φ seq 0 + G dom j seq 1 + F j seq 1 + F j + 1
123 0zd φ seq 0 + G dom 0
124 eqidd φ seq 0 + G dom n 0 G n = G n
125 20 adantlr φ seq 0 + G dom n 0 G n
126 simpr φ seq 0 + G dom seq 0 + G dom
127 102 123 124 125 126 isumrecl φ seq 0 + G dom n 0 G n
128 110 ffvelrnda φ seq 0 + G dom j seq 1 + F j
129 0zd φ 0
130 102 129 20 serfre φ seq 0 + G : 0
131 130 adantr φ seq 0 + G dom seq 0 + G : 0
132 ffvelrn seq 0 + G : 0 j 0 seq 0 + G j
133 131 37 132 syl2an φ seq 0 + G dom j seq 0 + G j
134 127 adantr φ seq 0 + G dom j n 0 G n
135 110 adantr φ seq 0 + G dom j seq 1 + F :
136 simpr φ seq 0 + G dom j j
137 26 adantl φ seq 0 + G dom j j
138 39 adantl φ seq 0 + G dom j j + 1 0
139 138 nn0red φ seq 0 + G dom j j + 1
140 nnexpcl 2 j + 1 0 2 j + 1
141 9 138 140 sylancr φ seq 0 + G dom j 2 j + 1
142 141 nnred φ seq 0 + G dom j 2 j + 1
143 2z 2
144 uzid 2 2 2
145 143 144 ax-mp 2 2
146 bernneq3 2 2 j + 1 0 j + 1 < 2 j + 1
147 145 138 146 sylancr φ seq 0 + G dom j j + 1 < 2 j + 1
148 139 142 147 ltled φ seq 0 + G dom j j + 1 2 j + 1
149 137 peano2zd φ seq 0 + G dom j j + 1
150 141 nnzd φ seq 0 + G dom j 2 j + 1
151 eluz j + 1 2 j + 1 2 j + 1 j + 1 j + 1 2 j + 1
152 149 150 151 syl2anc φ seq 0 + G dom j 2 j + 1 j + 1 j + 1 2 j + 1
153 148 152 mpbird φ seq 0 + G dom j 2 j + 1 j + 1
154 eluzp1m1 j 2 j + 1 j + 1 2 j + 1 1 j
155 137 153 154 syl2anc φ seq 0 + G dom j 2 j + 1 1 j
156 eluznn j 2 j + 1 1 j 2 j + 1 1
157 136 155 156 syl2anc φ seq 0 + G dom j 2 j + 1 1
158 135 157 ffvelrnd φ seq 0 + G dom j seq 1 + F 2 j + 1 1
159 25 adantlr φ seq 0 + G dom j j 1
160 simpll φ seq 0 + G dom j φ
161 elfznn k 1 2 j + 1 1 k
162 160 161 1 syl2an φ seq 0 + G dom j k 1 2 j + 1 1 F k
163 114 adantl φ seq 0 + G dom j j + 1
164 elfzuz k j + 1 2 j + 1 1 k j + 1
165 eluznn j + 1 k j + 1 k
166 163 164 165 syl2an φ seq 0 + G dom j k j + 1 2 j + 1 1 k
167 160 166 2 syl2an2r φ seq 0 + G dom j k j + 1 2 j + 1 1 0 F k
168 159 155 162 167 sermono φ seq 0 + G dom j seq 1 + F j seq 1 + F 2 j + 1 1
169 37 adantl φ seq 0 + G dom j j 0
170 1 2 3 4 climcndslem1 φ j 0 seq 1 + F 2 j + 1 1 seq 0 + G j
171 160 169 170 syl2anc φ seq 0 + G dom j seq 1 + F 2 j + 1 1 seq 0 + G j
172 128 158 133 168 171 letrd φ seq 0 + G dom j seq 1 + F j seq 0 + G j
173 eqidd φ seq 0 + G dom j n 0 j G n = G n
174 169 102 eleqtrdi φ seq 0 + G dom j j 0
175 elfznn0 n 0 j n 0
176 160 175 105 syl2an φ seq 0 + G dom j n 0 j G n
177 173 174 176 fsumser φ seq 0 + G dom j n = 0 j G n = seq 0 + G j
178 0zd φ seq 0 + G dom j 0
179 fzfid φ seq 0 + G dom j 0 j Fin
180 175 ssriv 0 j 0
181 180 a1i φ seq 0 + G dom j 0 j 0
182 eqidd φ seq 0 + G dom j n 0 G n = G n
183 20 ad4ant14 φ seq 0 + G dom j n 0 G n
184 49 ad4ant14 φ seq 0 + G dom j n 0 0 G n
185 simplr φ seq 0 + G dom j seq 0 + G dom
186 102 178 179 181 182 183 184 185 isumless φ seq 0 + G dom j n = 0 j G n n 0 G n
187 177 186 eqbrtrrd φ seq 0 + G dom j seq 0 + G j n 0 G n
188 128 133 134 172 187 letrd φ seq 0 + G dom j seq 1 + F j n 0 G n
189 188 ralrimiva φ seq 0 + G dom j seq 1 + F j n 0 G n
190 brralrspcev n 0 G n j seq 1 + F j n 0 G n x j seq 1 + F j x
191 127 189 190 syl2anc φ seq 0 + G dom x j seq 1 + F j x
192 5 109 110 122 191 climsup φ seq 0 + G dom seq 1 + F sup ran seq 1 + F <
193 99 releldmi seq 1 + F sup ran seq 1 + F < seq 1 + F dom
194 192 193 syl φ seq 0 + G dom seq 1 + F dom
195 108 194 impbida φ seq 1 + F dom seq 0 + G dom