Metamath Proof Explorer


Theorem climcndslem1

Description: Lemma for climcnds : bound the original series by the condensed series. (Contributed by Mario Carneiro, 18-Jul-2014)

Ref Expression
Hypotheses climcnds.1 φ k F k
climcnds.2 φ k 0 F k
climcnds.3 φ k F k + 1 F k
climcnds.4 φ n 0 G n = 2 n F 2 n
Assertion climcndslem1 φ N 0 seq 1 + F 2 N + 1 1 seq 0 + G N

Proof

Step Hyp Ref Expression
1 climcnds.1 φ k F k
2 climcnds.2 φ k 0 F k
3 climcnds.3 φ k F k + 1 F k
4 climcnds.4 φ n 0 G n = 2 n F 2 n
5 oveq1 x = 0 x + 1 = 0 + 1
6 0p1e1 0 + 1 = 1
7 5 6 eqtrdi x = 0 x + 1 = 1
8 7 oveq2d x = 0 2 x + 1 = 2 1
9 2cn 2
10 exp1 2 2 1 = 2
11 9 10 ax-mp 2 1 = 2
12 df-2 2 = 1 + 1
13 11 12 eqtri 2 1 = 1 + 1
14 8 13 eqtrdi x = 0 2 x + 1 = 1 + 1
15 14 oveq1d x = 0 2 x + 1 1 = 1 + 1 - 1
16 ax-1cn 1
17 16 16 pncan3oi 1 + 1 - 1 = 1
18 15 17 eqtrdi x = 0 2 x + 1 1 = 1
19 18 fveq2d x = 0 seq 1 + F 2 x + 1 1 = seq 1 + F 1
20 fveq2 x = 0 seq 0 + G x = seq 0 + G 0
21 19 20 breq12d x = 0 seq 1 + F 2 x + 1 1 seq 0 + G x seq 1 + F 1 seq 0 + G 0
22 21 imbi2d x = 0 φ seq 1 + F 2 x + 1 1 seq 0 + G x φ seq 1 + F 1 seq 0 + G 0
23 oveq1 x = j x + 1 = j + 1
24 23 oveq2d x = j 2 x + 1 = 2 j + 1
25 24 fvoveq1d x = j seq 1 + F 2 x + 1 1 = seq 1 + F 2 j + 1 1
26 fveq2 x = j seq 0 + G x = seq 0 + G j
27 25 26 breq12d x = j seq 1 + F 2 x + 1 1 seq 0 + G x seq 1 + F 2 j + 1 1 seq 0 + G j
28 27 imbi2d x = j φ seq 1 + F 2 x + 1 1 seq 0 + G x φ seq 1 + F 2 j + 1 1 seq 0 + G j
29 oveq1 x = j + 1 x + 1 = j + 1 + 1
30 29 oveq2d x = j + 1 2 x + 1 = 2 j + 1 + 1
31 30 fvoveq1d x = j + 1 seq 1 + F 2 x + 1 1 = seq 1 + F 2 j + 1 + 1 1
32 fveq2 x = j + 1 seq 0 + G x = seq 0 + G j + 1
33 31 32 breq12d x = j + 1 seq 1 + F 2 x + 1 1 seq 0 + G x seq 1 + F 2 j + 1 + 1 1 seq 0 + G j + 1
34 33 imbi2d x = j + 1 φ seq 1 + F 2 x + 1 1 seq 0 + G x φ seq 1 + F 2 j + 1 + 1 1 seq 0 + G j + 1
35 oveq1 x = N x + 1 = N + 1
36 35 oveq2d x = N 2 x + 1 = 2 N + 1
37 36 fvoveq1d x = N seq 1 + F 2 x + 1 1 = seq 1 + F 2 N + 1 1
38 fveq2 x = N seq 0 + G x = seq 0 + G N
39 37 38 breq12d x = N seq 1 + F 2 x + 1 1 seq 0 + G x seq 1 + F 2 N + 1 1 seq 0 + G N
40 39 imbi2d x = N φ seq 1 + F 2 x + 1 1 seq 0 + G x φ seq 1 + F 2 N + 1 1 seq 0 + G N
41 fveq2 k = 1 F k = F 1
42 41 eleq1d k = 1 F k F 1
43 1 ralrimiva φ k F k
44 1nn 1
45 44 a1i φ 1
46 42 43 45 rspcdva φ F 1
47 46 leidd φ F 1 F 1
48 46 recnd φ F 1
49 48 mulid2d φ 1 F 1 = F 1
50 47 49 breqtrrd φ F 1 1 F 1
51 1z 1
52 eqidd φ F 1 = F 1
53 51 52 seq1i φ seq 1 + F 1 = F 1
54 0z 0
55 fveq2 n = 0 G n = G 0
56 oveq2 n = 0 2 n = 2 0
57 exp0 2 2 0 = 1
58 9 57 ax-mp 2 0 = 1
59 56 58 eqtrdi n = 0 2 n = 1
60 59 fveq2d n = 0 F 2 n = F 1
61 59 60 oveq12d n = 0 2 n F 2 n = 1 F 1
62 55 61 eqeq12d n = 0 G n = 2 n F 2 n G 0 = 1 F 1
63 4 ralrimiva φ n 0 G n = 2 n F 2 n
64 0nn0 0 0
65 64 a1i φ 0 0
66 62 63 65 rspcdva φ G 0 = 1 F 1
67 54 66 seq1i φ seq 0 + G 0 = 1 F 1
68 50 53 67 3brtr4d φ seq 1 + F 1 seq 0 + G 0
69 fzfid φ j 0 2 j + 1 2 j + 1 + 1 1 Fin
70 simpl φ j 0 φ
71 2nn 2
72 peano2nn0 j 0 j + 1 0
73 72 adantl φ j 0 j + 1 0
74 nnexpcl 2 j + 1 0 2 j + 1
75 71 73 74 sylancr φ j 0 2 j + 1
76 elfzuz k 2 j + 1 2 j + 1 + 1 1 k 2 j + 1
77 eluznn 2 j + 1 k 2 j + 1 k
78 75 76 77 syl2an φ j 0 k 2 j + 1 2 j + 1 + 1 1 k
79 70 78 1 syl2an2r φ j 0 k 2 j + 1 2 j + 1 + 1 1 F k
80 fveq2 k = 2 j + 1 F k = F 2 j + 1
81 80 eleq1d k = 2 j + 1 F k F 2 j + 1
82 43 adantr φ j 0 k F k
83 81 82 75 rspcdva φ j 0 F 2 j + 1
84 83 adantr φ j 0 k 2 j + 1 2 j + 1 + 1 1 F 2 j + 1
85 simpr φ j 0 n 2 j + 1 n 2 j + 1
86 simplll φ j 0 n 2 j + 1 k 2 j + 1 n φ
87 75 adantr φ j 0 n 2 j + 1 2 j + 1
88 elfzuz k 2 j + 1 n k 2 j + 1
89 87 88 77 syl2an φ j 0 n 2 j + 1 k 2 j + 1 n k
90 86 89 1 syl2anc φ j 0 n 2 j + 1 k 2 j + 1 n F k
91 simplll φ j 0 n 2 j + 1 k 2 j + 1 n 1 φ
92 elfzuz k 2 j + 1 n 1 k 2 j + 1
93 87 92 77 syl2an φ j 0 n 2 j + 1 k 2 j + 1 n 1 k
94 91 93 3 syl2anc φ j 0 n 2 j + 1 k 2 j + 1 n 1 F k + 1 F k
95 85 90 94 monoord2 φ j 0 n 2 j + 1 F n F 2 j + 1
96 95 ralrimiva φ j 0 n 2 j + 1 F n F 2 j + 1
97 fveq2 n = k F n = F k
98 97 breq1d n = k F n F 2 j + 1 F k F 2 j + 1
99 98 rspccva n 2 j + 1 F n F 2 j + 1 k 2 j + 1 F k F 2 j + 1
100 96 76 99 syl2an φ j 0 k 2 j + 1 2 j + 1 + 1 1 F k F 2 j + 1
101 69 79 84 100 fsumle φ j 0 k = 2 j + 1 2 j + 1 + 1 1 F k k = 2 j + 1 2 j + 1 + 1 1 F 2 j + 1
102 fzfid φ j 0 1 2 j + 1 1 Fin
103 hashcl 1 2 j + 1 1 Fin 1 2 j + 1 1 0
104 102 103 syl φ j 0 1 2 j + 1 1 0
105 104 nn0cnd φ j 0 1 2 j + 1 1
106 75 nnred φ j 0 2 j + 1
107 106 recnd φ j 0 2 j + 1
108 hashcl 2 j + 1 2 j + 1 + 1 1 Fin 2 j + 1 2 j + 1 + 1 1 0
109 69 108 syl φ j 0 2 j + 1 2 j + 1 + 1 1 0
110 109 nn0cnd φ j 0 2 j + 1 2 j + 1 + 1 1
111 2z 2
112 zexpcl 2 j + 1 0 2 j + 1
113 111 73 112 sylancr φ j 0 2 j + 1
114 2re 2
115 1le2 1 2
116 nn0p1nn j 0 j + 1
117 116 adantl φ j 0 j + 1
118 nnuz = 1
119 117 118 eleqtrdi φ j 0 j + 1 1
120 leexp2a 2 1 2 j + 1 1 2 1 2 j + 1
121 114 115 119 120 mp3an12i φ j 0 2 1 2 j + 1
122 11 121 eqbrtrrid φ j 0 2 2 j + 1
123 111 eluz1i 2 j + 1 2 2 j + 1 2 2 j + 1
124 113 122 123 sylanbrc φ j 0 2 j + 1 2
125 uz2m1nn 2 j + 1 2 2 j + 1 1
126 124 125 syl φ j 0 2 j + 1 1
127 126 118 eleqtrdi φ j 0 2 j + 1 1 1
128 peano2zm 2 j + 1 2 j + 1 1
129 113 128 syl φ j 0 2 j + 1 1
130 peano2nn0 j + 1 0 j + 1 + 1 0
131 73 130 syl φ j 0 j + 1 + 1 0
132 zexpcl 2 j + 1 + 1 0 2 j + 1 + 1
133 111 131 132 sylancr φ j 0 2 j + 1 + 1
134 peano2zm 2 j + 1 + 1 2 j + 1 + 1 1
135 133 134 syl φ j 0 2 j + 1 + 1 1
136 113 zred φ j 0 2 j + 1
137 133 zred φ j 0 2 j + 1 + 1
138 1red φ j 0 1
139 73 nn0zd φ j 0 j + 1
140 uzid j + 1 j + 1 j + 1
141 peano2uz j + 1 j + 1 j + 1 + 1 j + 1
142 leexp2a 2 1 2 j + 1 + 1 j + 1 2 j + 1 2 j + 1 + 1
143 114 115 142 mp3an12 j + 1 + 1 j + 1 2 j + 1 2 j + 1 + 1
144 139 140 141 143 4syl φ j 0 2 j + 1 2 j + 1 + 1
145 136 137 138 144 lesub1dd φ j 0 2 j + 1 1 2 j + 1 + 1 1
146 eluz2 2 j + 1 + 1 1 2 j + 1 1 2 j + 1 1 2 j + 1 + 1 1 2 j + 1 1 2 j + 1 + 1 1
147 129 135 145 146 syl3anbrc φ j 0 2 j + 1 + 1 1 2 j + 1 1
148 elfzuzb 2 j + 1 1 1 2 j + 1 + 1 1 2 j + 1 1 1 2 j + 1 + 1 1 2 j + 1 1
149 127 147 148 sylanbrc φ j 0 2 j + 1 1 1 2 j + 1 + 1 1
150 fzsplit 2 j + 1 1 1 2 j + 1 + 1 1 1 2 j + 1 + 1 1 = 1 2 j + 1 1 2 j + 1 - 1 + 1 2 j + 1 + 1 1
151 149 150 syl φ j 0 1 2 j + 1 + 1 1 = 1 2 j + 1 1 2 j + 1 - 1 + 1 2 j + 1 + 1 1
152 npcan 2 j + 1 1 2 j + 1 - 1 + 1 = 2 j + 1
153 107 16 152 sylancl φ j 0 2 j + 1 - 1 + 1 = 2 j + 1
154 153 oveq1d φ j 0 2 j + 1 - 1 + 1 2 j + 1 + 1 1 = 2 j + 1 2 j + 1 + 1 1
155 154 uneq2d φ j 0 1 2 j + 1 1 2 j + 1 - 1 + 1 2 j + 1 + 1 1 = 1 2 j + 1 1 2 j + 1 2 j + 1 + 1 1
156 151 155 eqtrd φ j 0 1 2 j + 1 + 1 1 = 1 2 j + 1 1 2 j + 1 2 j + 1 + 1 1
157 156 fveq2d φ j 0 1 2 j + 1 + 1 1 = 1 2 j + 1 1 2 j + 1 2 j + 1 + 1 1
158 expp1 2 j + 1 0 2 j + 1 + 1 = 2 j + 1 2
159 9 73 158 sylancr φ j 0 2 j + 1 + 1 = 2 j + 1 2
160 107 times2d φ j 0 2 j + 1 2 = 2 j + 1 + 2 j + 1
161 159 160 eqtrd φ j 0 2 j + 1 + 1 = 2 j + 1 + 2 j + 1
162 161 oveq1d φ j 0 2 j + 1 + 1 1 = 2 j + 1 + 2 j + 1 - 1
163 1cnd φ j 0 1
164 107 107 163 addsubd φ j 0 2 j + 1 + 2 j + 1 - 1 = 2 j + 1 - 1 + 2 j + 1
165 162 164 eqtrd φ j 0 2 j + 1 + 1 1 = 2 j + 1 - 1 + 2 j + 1
166 uztrn 2 j + 1 + 1 1 2 j + 1 1 2 j + 1 1 1 2 j + 1 + 1 1 1
167 147 127 166 syl2anc φ j 0 2 j + 1 + 1 1 1
168 167 118 eleqtrrdi φ j 0 2 j + 1 + 1 1
169 168 nnnn0d φ j 0 2 j + 1 + 1 1 0
170 hashfz1 2 j + 1 + 1 1 0 1 2 j + 1 + 1 1 = 2 j + 1 + 1 1
171 169 170 syl φ j 0 1 2 j + 1 + 1 1 = 2 j + 1 + 1 1
172 126 nnnn0d φ j 0 2 j + 1 1 0
173 hashfz1 2 j + 1 1 0 1 2 j + 1 1 = 2 j + 1 1
174 172 173 syl φ j 0 1 2 j + 1 1 = 2 j + 1 1
175 174 oveq1d φ j 0 1 2 j + 1 1 + 2 j + 1 = 2 j + 1 - 1 + 2 j + 1
176 165 171 175 3eqtr4d φ j 0 1 2 j + 1 + 1 1 = 1 2 j + 1 1 + 2 j + 1
177 106 ltm1d φ j 0 2 j + 1 1 < 2 j + 1
178 fzdisj 2 j + 1 1 < 2 j + 1 1 2 j + 1 1 2 j + 1 2 j + 1 + 1 1 =
179 177 178 syl φ j 0 1 2 j + 1 1 2 j + 1 2 j + 1 + 1 1 =
180 hashun 1 2 j + 1 1 Fin 2 j + 1 2 j + 1 + 1 1 Fin 1 2 j + 1 1 2 j + 1 2 j + 1 + 1 1 = 1 2 j + 1 1 2 j + 1 2 j + 1 + 1 1 = 1 2 j + 1 1 + 2 j + 1 2 j + 1 + 1 1
181 102 69 179 180 syl3anc φ j 0 1 2 j + 1 1 2 j + 1 2 j + 1 + 1 1 = 1 2 j + 1 1 + 2 j + 1 2 j + 1 + 1 1
182 157 176 181 3eqtr3d φ j 0 1 2 j + 1 1 + 2 j + 1 = 1 2 j + 1 1 + 2 j + 1 2 j + 1 + 1 1
183 105 107 110 182 addcanad φ j 0 2 j + 1 = 2 j + 1 2 j + 1 + 1 1
184 183 oveq1d φ j 0 2 j + 1 F 2 j + 1 = 2 j + 1 2 j + 1 + 1 1 F 2 j + 1
185 fveq2 n = j + 1 G n = G j + 1
186 oveq2 n = j + 1 2 n = 2 j + 1
187 186 fveq2d n = j + 1 F 2 n = F 2 j + 1
188 186 187 oveq12d n = j + 1 2 n F 2 n = 2 j + 1 F 2 j + 1
189 185 188 eqeq12d n = j + 1 G n = 2 n F 2 n G j + 1 = 2 j + 1 F 2 j + 1
190 63 adantr φ j 0 n 0 G n = 2 n F 2 n
191 189 190 73 rspcdva φ j 0 G j + 1 = 2 j + 1 F 2 j + 1
192 83 recnd φ j 0 F 2 j + 1
193 fsumconst 2 j + 1 2 j + 1 + 1 1 Fin F 2 j + 1 k = 2 j + 1 2 j + 1 + 1 1 F 2 j + 1 = 2 j + 1 2 j + 1 + 1 1 F 2 j + 1
194 69 192 193 syl2anc φ j 0 k = 2 j + 1 2 j + 1 + 1 1 F 2 j + 1 = 2 j + 1 2 j + 1 + 1 1 F 2 j + 1
195 184 191 194 3eqtr4d φ j 0 G j + 1 = k = 2 j + 1 2 j + 1 + 1 1 F 2 j + 1
196 101 195 breqtrrd φ j 0 k = 2 j + 1 2 j + 1 + 1 1 F k G j + 1
197 elfznn k 1 2 j + 1 1 k
198 70 197 1 syl2an φ j 0 k 1 2 j + 1 1 F k
199 102 198 fsumrecl φ j 0 k = 1 2 j + 1 1 F k
200 69 79 fsumrecl φ j 0 k = 2 j + 1 2 j + 1 + 1 1 F k
201 nn0uz 0 = 0
202 0zd φ 0
203 simpr φ n 0 n 0
204 nnexpcl 2 n 0 2 n
205 71 203 204 sylancr φ n 0 2 n
206 205 nnred φ n 0 2 n
207 fveq2 k = 2 n F k = F 2 n
208 207 eleq1d k = 2 n F k F 2 n
209 43 adantr φ n 0 k F k
210 208 209 205 rspcdva φ n 0 F 2 n
211 206 210 remulcld φ n 0 2 n F 2 n
212 4 211 eqeltrd φ n 0 G n
213 201 202 212 serfre φ seq 0 + G : 0
214 213 ffvelrnda φ j 0 seq 0 + G j
215 136 83 remulcld φ j 0 2 j + 1 F 2 j + 1
216 191 215 eqeltrd φ j 0 G j + 1
217 le2add k = 1 2 j + 1 1 F k k = 2 j + 1 2 j + 1 + 1 1 F k seq 0 + G j G j + 1 k = 1 2 j + 1 1 F k seq 0 + G j k = 2 j + 1 2 j + 1 + 1 1 F k G j + 1 k = 1 2 j + 1 1 F k + k = 2 j + 1 2 j + 1 + 1 1 F k seq 0 + G j + G j + 1
218 199 200 214 216 217 syl22anc φ j 0 k = 1 2 j + 1 1 F k seq 0 + G j k = 2 j + 1 2 j + 1 + 1 1 F k G j + 1 k = 1 2 j + 1 1 F k + k = 2 j + 1 2 j + 1 + 1 1 F k seq 0 + G j + G j + 1
219 196 218 mpan2d φ j 0 k = 1 2 j + 1 1 F k seq 0 + G j k = 1 2 j + 1 1 F k + k = 2 j + 1 2 j + 1 + 1 1 F k seq 0 + G j + G j + 1
220 eqidd φ j 0 k 1 2 j + 1 1 F k = F k
221 1 recnd φ k F k
222 70 197 221 syl2an φ j 0 k 1 2 j + 1 1 F k
223 220 127 222 fsumser φ j 0 k = 1 2 j + 1 1 F k = seq 1 + F 2 j + 1 1
224 223 eqcomd φ j 0 seq 1 + F 2 j + 1 1 = k = 1 2 j + 1 1 F k
225 224 breq1d φ j 0 seq 1 + F 2 j + 1 1 seq 0 + G j k = 1 2 j + 1 1 F k seq 0 + G j
226 eqidd φ j 0 k 1 2 j + 1 + 1 1 F k = F k
227 elfznn k 1 2 j + 1 + 1 1 k
228 70 227 221 syl2an φ j 0 k 1 2 j + 1 + 1 1 F k
229 226 167 228 fsumser φ j 0 k = 1 2 j + 1 + 1 1 F k = seq 1 + F 2 j + 1 + 1 1
230 fzfid φ j 0 1 2 j + 1 + 1 1 Fin
231 179 156 230 228 fsumsplit φ j 0 k = 1 2 j + 1 + 1 1 F k = k = 1 2 j + 1 1 F k + k = 2 j + 1 2 j + 1 + 1 1 F k
232 229 231 eqtr3d φ j 0 seq 1 + F 2 j + 1 + 1 1 = k = 1 2 j + 1 1 F k + k = 2 j + 1 2 j + 1 + 1 1 F k
233 simpr φ j 0 j 0
234 233 201 eleqtrdi φ j 0 j 0
235 seqp1 j 0 seq 0 + G j + 1 = seq 0 + G j + G j + 1
236 234 235 syl φ j 0 seq 0 + G j + 1 = seq 0 + G j + G j + 1
237 232 236 breq12d φ j 0 seq 1 + F 2 j + 1 + 1 1 seq 0 + G j + 1 k = 1 2 j + 1 1 F k + k = 2 j + 1 2 j + 1 + 1 1 F k seq 0 + G j + G j + 1
238 219 225 237 3imtr4d φ j 0 seq 1 + F 2 j + 1 1 seq 0 + G j seq 1 + F 2 j + 1 + 1 1 seq 0 + G j + 1
239 238 expcom j 0 φ seq 1 + F 2 j + 1 1 seq 0 + G j seq 1 + F 2 j + 1 + 1 1 seq 0 + G j + 1
240 239 a2d j 0 φ seq 1 + F 2 j + 1 1 seq 0 + G j φ seq 1 + F 2 j + 1 + 1 1 seq 0 + G j + 1
241 22 28 34 40 68 240 nn0ind N 0 φ seq 1 + F 2 N + 1 1 seq 0 + G N
242 241 impcom φ N 0 seq 1 + F 2 N + 1 1 seq 0 + G N