Step |
Hyp |
Ref |
Expression |
1 |
|
climcnds.1 |
|
2 |
|
climcnds.2 |
|
3 |
|
climcnds.3 |
|
4 |
|
climcnds.4 |
|
5 |
|
oveq1 |
|
6 |
|
0p1e1 |
|
7 |
5 6
|
eqtrdi |
|
8 |
7
|
oveq2d |
|
9 |
|
2cn |
|
10 |
|
exp1 |
|
11 |
9 10
|
ax-mp |
|
12 |
|
df-2 |
|
13 |
11 12
|
eqtri |
|
14 |
8 13
|
eqtrdi |
|
15 |
14
|
oveq1d |
|
16 |
|
ax-1cn |
|
17 |
16 16
|
pncan3oi |
|
18 |
15 17
|
eqtrdi |
|
19 |
18
|
fveq2d |
|
20 |
|
fveq2 |
|
21 |
19 20
|
breq12d |
|
22 |
21
|
imbi2d |
|
23 |
|
oveq1 |
|
24 |
23
|
oveq2d |
|
25 |
24
|
fvoveq1d |
|
26 |
|
fveq2 |
|
27 |
25 26
|
breq12d |
|
28 |
27
|
imbi2d |
|
29 |
|
oveq1 |
|
30 |
29
|
oveq2d |
|
31 |
30
|
fvoveq1d |
|
32 |
|
fveq2 |
|
33 |
31 32
|
breq12d |
|
34 |
33
|
imbi2d |
|
35 |
|
oveq1 |
|
36 |
35
|
oveq2d |
|
37 |
36
|
fvoveq1d |
|
38 |
|
fveq2 |
|
39 |
37 38
|
breq12d |
|
40 |
39
|
imbi2d |
|
41 |
|
fveq2 |
|
42 |
41
|
eleq1d |
|
43 |
1
|
ralrimiva |
|
44 |
|
1nn |
|
45 |
44
|
a1i |
|
46 |
42 43 45
|
rspcdva |
|
47 |
46
|
leidd |
|
48 |
46
|
recnd |
|
49 |
48
|
mulid2d |
|
50 |
47 49
|
breqtrrd |
|
51 |
|
1z |
|
52 |
|
eqidd |
|
53 |
51 52
|
seq1i |
|
54 |
|
0z |
|
55 |
|
fveq2 |
|
56 |
|
oveq2 |
|
57 |
|
exp0 |
|
58 |
9 57
|
ax-mp |
|
59 |
56 58
|
eqtrdi |
|
60 |
59
|
fveq2d |
|
61 |
59 60
|
oveq12d |
|
62 |
55 61
|
eqeq12d |
|
63 |
4
|
ralrimiva |
|
64 |
|
0nn0 |
|
65 |
64
|
a1i |
|
66 |
62 63 65
|
rspcdva |
|
67 |
54 66
|
seq1i |
|
68 |
50 53 67
|
3brtr4d |
|
69 |
|
fzfid |
|
70 |
|
simpl |
|
71 |
|
2nn |
|
72 |
|
peano2nn0 |
|
73 |
72
|
adantl |
|
74 |
|
nnexpcl |
|
75 |
71 73 74
|
sylancr |
|
76 |
|
elfzuz |
|
77 |
|
eluznn |
|
78 |
75 76 77
|
syl2an |
|
79 |
70 78 1
|
syl2an2r |
|
80 |
|
fveq2 |
|
81 |
80
|
eleq1d |
|
82 |
43
|
adantr |
|
83 |
81 82 75
|
rspcdva |
|
84 |
83
|
adantr |
|
85 |
|
simpr |
|
86 |
|
simplll |
|
87 |
75
|
adantr |
|
88 |
|
elfzuz |
|
89 |
87 88 77
|
syl2an |
|
90 |
86 89 1
|
syl2anc |
|
91 |
|
simplll |
|
92 |
|
elfzuz |
|
93 |
87 92 77
|
syl2an |
|
94 |
91 93 3
|
syl2anc |
|
95 |
85 90 94
|
monoord2 |
|
96 |
95
|
ralrimiva |
|
97 |
|
fveq2 |
|
98 |
97
|
breq1d |
|
99 |
98
|
rspccva |
|
100 |
96 76 99
|
syl2an |
|
101 |
69 79 84 100
|
fsumle |
|
102 |
|
fzfid |
|
103 |
|
hashcl |
|
104 |
102 103
|
syl |
|
105 |
104
|
nn0cnd |
|
106 |
75
|
nnred |
|
107 |
106
|
recnd |
|
108 |
|
hashcl |
|
109 |
69 108
|
syl |
|
110 |
109
|
nn0cnd |
|
111 |
|
2z |
|
112 |
|
zexpcl |
|
113 |
111 73 112
|
sylancr |
|
114 |
|
2re |
|
115 |
|
1le2 |
|
116 |
|
nn0p1nn |
|
117 |
116
|
adantl |
|
118 |
|
nnuz |
|
119 |
117 118
|
eleqtrdi |
|
120 |
|
leexp2a |
|
121 |
114 115 119 120
|
mp3an12i |
|
122 |
11 121
|
eqbrtrrid |
|
123 |
111
|
eluz1i |
|
124 |
113 122 123
|
sylanbrc |
|
125 |
|
uz2m1nn |
|
126 |
124 125
|
syl |
|
127 |
126 118
|
eleqtrdi |
|
128 |
|
peano2zm |
|
129 |
113 128
|
syl |
|
130 |
|
peano2nn0 |
|
131 |
73 130
|
syl |
|
132 |
|
zexpcl |
|
133 |
111 131 132
|
sylancr |
|
134 |
|
peano2zm |
|
135 |
133 134
|
syl |
|
136 |
113
|
zred |
|
137 |
133
|
zred |
|
138 |
|
1red |
|
139 |
73
|
nn0zd |
|
140 |
|
uzid |
|
141 |
|
peano2uz |
|
142 |
|
leexp2a |
|
143 |
114 115 142
|
mp3an12 |
|
144 |
139 140 141 143
|
4syl |
|
145 |
136 137 138 144
|
lesub1dd |
|
146 |
|
eluz2 |
|
147 |
129 135 145 146
|
syl3anbrc |
|
148 |
|
elfzuzb |
|
149 |
127 147 148
|
sylanbrc |
|
150 |
|
fzsplit |
|
151 |
149 150
|
syl |
|
152 |
|
npcan |
|
153 |
107 16 152
|
sylancl |
|
154 |
153
|
oveq1d |
|
155 |
154
|
uneq2d |
|
156 |
151 155
|
eqtrd |
|
157 |
156
|
fveq2d |
|
158 |
|
expp1 |
|
159 |
9 73 158
|
sylancr |
|
160 |
107
|
times2d |
|
161 |
159 160
|
eqtrd |
|
162 |
161
|
oveq1d |
|
163 |
|
1cnd |
|
164 |
107 107 163
|
addsubd |
|
165 |
162 164
|
eqtrd |
|
166 |
|
uztrn |
|
167 |
147 127 166
|
syl2anc |
|
168 |
167 118
|
eleqtrrdi |
|
169 |
168
|
nnnn0d |
|
170 |
|
hashfz1 |
|
171 |
169 170
|
syl |
|
172 |
126
|
nnnn0d |
|
173 |
|
hashfz1 |
|
174 |
172 173
|
syl |
|
175 |
174
|
oveq1d |
|
176 |
165 171 175
|
3eqtr4d |
|
177 |
106
|
ltm1d |
|
178 |
|
fzdisj |
|
179 |
177 178
|
syl |
|
180 |
|
hashun |
|
181 |
102 69 179 180
|
syl3anc |
|
182 |
157 176 181
|
3eqtr3d |
|
183 |
105 107 110 182
|
addcanad |
|
184 |
183
|
oveq1d |
|
185 |
|
fveq2 |
|
186 |
|
oveq2 |
|
187 |
186
|
fveq2d |
|
188 |
186 187
|
oveq12d |
|
189 |
185 188
|
eqeq12d |
|
190 |
63
|
adantr |
|
191 |
189 190 73
|
rspcdva |
|
192 |
83
|
recnd |
|
193 |
|
fsumconst |
|
194 |
69 192 193
|
syl2anc |
|
195 |
184 191 194
|
3eqtr4d |
|
196 |
101 195
|
breqtrrd |
|
197 |
|
elfznn |
|
198 |
70 197 1
|
syl2an |
|
199 |
102 198
|
fsumrecl |
|
200 |
69 79
|
fsumrecl |
|
201 |
|
nn0uz |
|
202 |
|
0zd |
|
203 |
|
simpr |
|
204 |
|
nnexpcl |
|
205 |
71 203 204
|
sylancr |
|
206 |
205
|
nnred |
|
207 |
|
fveq2 |
|
208 |
207
|
eleq1d |
|
209 |
43
|
adantr |
|
210 |
208 209 205
|
rspcdva |
|
211 |
206 210
|
remulcld |
|
212 |
4 211
|
eqeltrd |
|
213 |
201 202 212
|
serfre |
|
214 |
213
|
ffvelrnda |
|
215 |
136 83
|
remulcld |
|
216 |
191 215
|
eqeltrd |
|
217 |
|
le2add |
|
218 |
199 200 214 216 217
|
syl22anc |
|
219 |
196 218
|
mpan2d |
|
220 |
|
eqidd |
|
221 |
1
|
recnd |
|
222 |
70 197 221
|
syl2an |
|
223 |
220 127 222
|
fsumser |
|
224 |
223
|
eqcomd |
|
225 |
224
|
breq1d |
|
226 |
|
eqidd |
|
227 |
|
elfznn |
|
228 |
70 227 221
|
syl2an |
|
229 |
226 167 228
|
fsumser |
|
230 |
|
fzfid |
|
231 |
179 156 230 228
|
fsumsplit |
|
232 |
229 231
|
eqtr3d |
|
233 |
|
simpr |
|
234 |
233 201
|
eleqtrdi |
|
235 |
|
seqp1 |
|
236 |
234 235
|
syl |
|
237 |
232 236
|
breq12d |
|
238 |
219 225 237
|
3imtr4d |
|
239 |
238
|
expcom |
|
240 |
239
|
a2d |
|
241 |
22 28 34 40 68 240
|
nn0ind |
|
242 |
241
|
impcom |
|