Step |
Hyp |
Ref |
Expression |
1 |
|
climcnds.1 |
|
2 |
|
climcnds.2 |
|
3 |
|
climcnds.3 |
|
4 |
|
climcnds.4 |
|
5 |
|
fveq2 |
|
6 |
|
oveq2 |
|
7 |
|
2cn |
|
8 |
|
exp1 |
|
9 |
7 8
|
ax-mp |
|
10 |
6 9
|
eqtrdi |
|
11 |
10
|
fveq2d |
|
12 |
11
|
oveq2d |
|
13 |
5 12
|
breq12d |
|
14 |
13
|
imbi2d |
|
15 |
|
fveq2 |
|
16 |
|
oveq2 |
|
17 |
16
|
fveq2d |
|
18 |
17
|
oveq2d |
|
19 |
15 18
|
breq12d |
|
20 |
19
|
imbi2d |
|
21 |
|
fveq2 |
|
22 |
|
oveq2 |
|
23 |
22
|
fveq2d |
|
24 |
23
|
oveq2d |
|
25 |
21 24
|
breq12d |
|
26 |
25
|
imbi2d |
|
27 |
|
fveq2 |
|
28 |
|
oveq2 |
|
29 |
28
|
fveq2d |
|
30 |
29
|
oveq2d |
|
31 |
27 30
|
breq12d |
|
32 |
31
|
imbi2d |
|
33 |
|
fveq2 |
|
34 |
33
|
breq2d |
|
35 |
2
|
ralrimiva |
|
36 |
|
1nn |
|
37 |
36
|
a1i |
|
38 |
34 35 37
|
rspcdva |
|
39 |
|
fveq2 |
|
40 |
39
|
eleq1d |
|
41 |
1
|
ralrimiva |
|
42 |
|
2nn |
|
43 |
42
|
a1i |
|
44 |
40 41 43
|
rspcdva |
|
45 |
33
|
eleq1d |
|
46 |
45 41 37
|
rspcdva |
|
47 |
44 46
|
addge02d |
|
48 |
38 47
|
mpbid |
|
49 |
46 44
|
readdcld |
|
50 |
43
|
nnrpd |
|
51 |
44 49 50
|
lemul2d |
|
52 |
48 51
|
mpbid |
|
53 |
|
1z |
|
54 |
|
fveq2 |
|
55 |
|
oveq2 |
|
56 |
55 9
|
eqtrdi |
|
57 |
56
|
fveq2d |
|
58 |
56 57
|
oveq12d |
|
59 |
54 58
|
eqeq12d |
|
60 |
4
|
ralrimiva |
|
61 |
|
1nn0 |
|
62 |
61
|
a1i |
|
63 |
59 60 62
|
rspcdva |
|
64 |
53 63
|
seq1i |
|
65 |
|
nnuz |
|
66 |
|
df-2 |
|
67 |
|
eqidd |
|
68 |
53 67
|
seq1i |
|
69 |
|
eqidd |
|
70 |
65 37 66 68 69
|
seqp1d |
|
71 |
70
|
oveq2d |
|
72 |
52 64 71
|
3brtr4d |
|
73 |
|
fveq2 |
|
74 |
|
oveq2 |
|
75 |
74
|
fveq2d |
|
76 |
74 75
|
oveq12d |
|
77 |
73 76
|
eqeq12d |
|
78 |
60
|
adantr |
|
79 |
|
peano2nn |
|
80 |
79
|
adantl |
|
81 |
80
|
nnnn0d |
|
82 |
77 78 81
|
rspcdva |
|
83 |
|
nnnn0 |
|
84 |
83
|
adantl |
|
85 |
|
expp1 |
|
86 |
7 84 85
|
sylancr |
|
87 |
|
nnexpcl |
|
88 |
42 83 87
|
sylancr |
|
89 |
88
|
adantl |
|
90 |
89
|
nncnd |
|
91 |
|
mulcom |
|
92 |
90 7 91
|
sylancl |
|
93 |
86 92
|
eqtrd |
|
94 |
93
|
oveq1d |
|
95 |
7
|
a1i |
|
96 |
|
fveq2 |
|
97 |
96
|
eleq1d |
|
98 |
41
|
adantr |
|
99 |
|
nnexpcl |
|
100 |
42 81 99
|
sylancr |
|
101 |
97 98 100
|
rspcdva |
|
102 |
101
|
recnd |
|
103 |
95 90 102
|
mulassd |
|
104 |
82 94 103
|
3eqtrd |
|
105 |
89
|
nnnn0d |
|
106 |
|
hashfz1 |
|
107 |
105 106
|
syl |
|
108 |
107 90
|
eqeltrd |
|
109 |
|
fzfid |
|
110 |
|
hashcl |
|
111 |
109 110
|
syl |
|
112 |
111
|
nn0cnd |
|
113 |
|
simpr |
|
114 |
113
|
nnzd |
|
115 |
|
uzid |
|
116 |
|
peano2uz |
|
117 |
|
2re |
|
118 |
|
1le2 |
|
119 |
|
leexp2a |
|
120 |
117 118 119
|
mp3an12 |
|
121 |
114 115 116 120
|
4syl |
|
122 |
89 65
|
eleqtrdi |
|
123 |
100
|
nnzd |
|
124 |
|
elfz5 |
|
125 |
122 123 124
|
syl2anc |
|
126 |
121 125
|
mpbird |
|
127 |
|
fzsplit |
|
128 |
126 127
|
syl |
|
129 |
128
|
fveq2d |
|
130 |
90
|
times2d |
|
131 |
86 130
|
eqtrd |
|
132 |
100
|
nnnn0d |
|
133 |
|
hashfz1 |
|
134 |
132 133
|
syl |
|
135 |
107
|
oveq1d |
|
136 |
131 134 135
|
3eqtr4d |
|
137 |
|
fzfid |
|
138 |
89
|
nnred |
|
139 |
138
|
ltp1d |
|
140 |
|
fzdisj |
|
141 |
139 140
|
syl |
|
142 |
|
hashun |
|
143 |
137 109 141 142
|
syl3anc |
|
144 |
129 136 143
|
3eqtr3d |
|
145 |
108 90 112 144
|
addcanad |
|
146 |
145
|
oveq1d |
|
147 |
|
fsumconst |
|
148 |
109 102 147
|
syl2anc |
|
149 |
146 148
|
eqtr4d |
|
150 |
101
|
adantr |
|
151 |
|
simpl |
|
152 |
|
peano2nn |
|
153 |
89 152
|
syl |
|
154 |
|
elfzuz |
|
155 |
|
eluznn |
|
156 |
153 154 155
|
syl2an |
|
157 |
151 156 1
|
syl2an2r |
|
158 |
|
elfzuz3 |
|
159 |
158
|
adantl |
|
160 |
|
simplll |
|
161 |
|
elfzuz |
|
162 |
|
eluznn |
|
163 |
153 161 162
|
syl2an |
|
164 |
|
elfzuz |
|
165 |
|
eluznn |
|
166 |
163 164 165
|
syl2an |
|
167 |
160 166 1
|
syl2anc |
|
168 |
|
simplll |
|
169 |
|
elfzuz |
|
170 |
163 169 165
|
syl2an |
|
171 |
168 170 3
|
syl2anc |
|
172 |
159 167 171
|
monoord2 |
|
173 |
172
|
ralrimiva |
|
174 |
|
fveq2 |
|
175 |
174
|
breq2d |
|
176 |
175
|
rspccva |
|
177 |
173 176
|
sylan |
|
178 |
109 150 157 177
|
fsumle |
|
179 |
149 178
|
eqbrtrd |
|
180 |
138 101
|
remulcld |
|
181 |
109 157
|
fsumrecl |
|
182 |
|
2rp |
|
183 |
182
|
a1i |
|
184 |
180 181 183
|
lemul2d |
|
185 |
179 184
|
mpbid |
|
186 |
104 185
|
eqbrtrd |
|
187 |
|
1zzd |
|
188 |
|
nnnn0 |
|
189 |
|
simpr |
|
190 |
|
nnexpcl |
|
191 |
42 189 190
|
sylancr |
|
192 |
191
|
nnred |
|
193 |
|
fveq2 |
|
194 |
193
|
eleq1d |
|
195 |
41
|
adantr |
|
196 |
194 195 191
|
rspcdva |
|
197 |
192 196
|
remulcld |
|
198 |
4 197
|
eqeltrd |
|
199 |
188 198
|
sylan2 |
|
200 |
65 187 199
|
serfre |
|
201 |
200
|
ffvelrnda |
|
202 |
73
|
eleq1d |
|
203 |
199
|
ralrimiva |
|
204 |
203
|
adantr |
|
205 |
202 204 80
|
rspcdva |
|
206 |
65 187 1
|
serfre |
|
207 |
|
ffvelrn |
|
208 |
206 88 207
|
syl2an |
|
209 |
|
remulcl |
|
210 |
117 208 209
|
sylancr |
|
211 |
|
remulcl |
|
212 |
117 181 211
|
sylancr |
|
213 |
|
le2add |
|
214 |
201 205 210 212 213
|
syl22anc |
|
215 |
186 214
|
mpan2d |
|
216 |
113 65
|
eleqtrdi |
|
217 |
|
seqp1 |
|
218 |
216 217
|
syl |
|
219 |
|
fzfid |
|
220 |
|
elfznn |
|
221 |
1
|
recnd |
|
222 |
151 220 221
|
syl2an |
|
223 |
141 128 219 222
|
fsumsplit |
|
224 |
|
eqidd |
|
225 |
100 65
|
eleqtrdi |
|
226 |
224 225 222
|
fsumser |
|
227 |
|
eqidd |
|
228 |
|
elfznn |
|
229 |
151 228 221
|
syl2an |
|
230 |
227 122 229
|
fsumser |
|
231 |
230
|
oveq1d |
|
232 |
223 226 231
|
3eqtr3d |
|
233 |
232
|
oveq2d |
|
234 |
208
|
recnd |
|
235 |
181
|
recnd |
|
236 |
95 234 235
|
adddid |
|
237 |
233 236
|
eqtrd |
|
238 |
218 237
|
breq12d |
|
239 |
215 238
|
sylibrd |
|
240 |
239
|
expcom |
|
241 |
240
|
a2d |
|
242 |
14 20 26 32 72 241
|
nnind |
|
243 |
242
|
impcom |
|