Metamath Proof Explorer


Theorem climcndslem2

Description: Lemma for climcnds : bound the condensed series by the original series. (Contributed by Mario Carneiro, 18-Jul-2014) (Proof shortened by AV, 10-Jul-2022)

Ref Expression
Hypotheses climcnds.1 φ k F k
climcnds.2 φ k 0 F k
climcnds.3 φ k F k + 1 F k
climcnds.4 φ n 0 G n = 2 n F 2 n
Assertion climcndslem2 φ N seq 1 + G N 2 seq 1 + F 2 N

Proof

Step Hyp Ref Expression
1 climcnds.1 φ k F k
2 climcnds.2 φ k 0 F k
3 climcnds.3 φ k F k + 1 F k
4 climcnds.4 φ n 0 G n = 2 n F 2 n
5 fveq2 x = 1 seq 1 + G x = seq 1 + G 1
6 oveq2 x = 1 2 x = 2 1
7 2cn 2
8 exp1 2 2 1 = 2
9 7 8 ax-mp 2 1 = 2
10 6 9 eqtrdi x = 1 2 x = 2
11 10 fveq2d x = 1 seq 1 + F 2 x = seq 1 + F 2
12 11 oveq2d x = 1 2 seq 1 + F 2 x = 2 seq 1 + F 2
13 5 12 breq12d x = 1 seq 1 + G x 2 seq 1 + F 2 x seq 1 + G 1 2 seq 1 + F 2
14 13 imbi2d x = 1 φ seq 1 + G x 2 seq 1 + F 2 x φ seq 1 + G 1 2 seq 1 + F 2
15 fveq2 x = j seq 1 + G x = seq 1 + G j
16 oveq2 x = j 2 x = 2 j
17 16 fveq2d x = j seq 1 + F 2 x = seq 1 + F 2 j
18 17 oveq2d x = j 2 seq 1 + F 2 x = 2 seq 1 + F 2 j
19 15 18 breq12d x = j seq 1 + G x 2 seq 1 + F 2 x seq 1 + G j 2 seq 1 + F 2 j
20 19 imbi2d x = j φ seq 1 + G x 2 seq 1 + F 2 x φ seq 1 + G j 2 seq 1 + F 2 j
21 fveq2 x = j + 1 seq 1 + G x = seq 1 + G j + 1
22 oveq2 x = j + 1 2 x = 2 j + 1
23 22 fveq2d x = j + 1 seq 1 + F 2 x = seq 1 + F 2 j + 1
24 23 oveq2d x = j + 1 2 seq 1 + F 2 x = 2 seq 1 + F 2 j + 1
25 21 24 breq12d x = j + 1 seq 1 + G x 2 seq 1 + F 2 x seq 1 + G j + 1 2 seq 1 + F 2 j + 1
26 25 imbi2d x = j + 1 φ seq 1 + G x 2 seq 1 + F 2 x φ seq 1 + G j + 1 2 seq 1 + F 2 j + 1
27 fveq2 x = N seq 1 + G x = seq 1 + G N
28 oveq2 x = N 2 x = 2 N
29 28 fveq2d x = N seq 1 + F 2 x = seq 1 + F 2 N
30 29 oveq2d x = N 2 seq 1 + F 2 x = 2 seq 1 + F 2 N
31 27 30 breq12d x = N seq 1 + G x 2 seq 1 + F 2 x seq 1 + G N 2 seq 1 + F 2 N
32 31 imbi2d x = N φ seq 1 + G x 2 seq 1 + F 2 x φ seq 1 + G N 2 seq 1 + F 2 N
33 fveq2 k = 1 F k = F 1
34 33 breq2d k = 1 0 F k 0 F 1
35 2 ralrimiva φ k 0 F k
36 1nn 1
37 36 a1i φ 1
38 34 35 37 rspcdva φ 0 F 1
39 fveq2 k = 2 F k = F 2
40 39 eleq1d k = 2 F k F 2
41 1 ralrimiva φ k F k
42 2nn 2
43 42 a1i φ 2
44 40 41 43 rspcdva φ F 2
45 33 eleq1d k = 1 F k F 1
46 45 41 37 rspcdva φ F 1
47 44 46 addge02d φ 0 F 1 F 2 F 1 + F 2
48 38 47 mpbid φ F 2 F 1 + F 2
49 46 44 readdcld φ F 1 + F 2
50 43 nnrpd φ 2 +
51 44 49 50 lemul2d φ F 2 F 1 + F 2 2 F 2 2 F 1 + F 2
52 48 51 mpbid φ 2 F 2 2 F 1 + F 2
53 1z 1
54 fveq2 n = 1 G n = G 1
55 oveq2 n = 1 2 n = 2 1
56 55 9 eqtrdi n = 1 2 n = 2
57 56 fveq2d n = 1 F 2 n = F 2
58 56 57 oveq12d n = 1 2 n F 2 n = 2 F 2
59 54 58 eqeq12d n = 1 G n = 2 n F 2 n G 1 = 2 F 2
60 4 ralrimiva φ n 0 G n = 2 n F 2 n
61 1nn0 1 0
62 61 a1i φ 1 0
63 59 60 62 rspcdva φ G 1 = 2 F 2
64 53 63 seq1i φ seq 1 + G 1 = 2 F 2
65 nnuz = 1
66 df-2 2 = 1 + 1
67 eqidd φ F 1 = F 1
68 53 67 seq1i φ seq 1 + F 1 = F 1
69 eqidd φ F 2 = F 2
70 65 37 66 68 69 seqp1d φ seq 1 + F 2 = F 1 + F 2
71 70 oveq2d φ 2 seq 1 + F 2 = 2 F 1 + F 2
72 52 64 71 3brtr4d φ seq 1 + G 1 2 seq 1 + F 2
73 fveq2 n = j + 1 G n = G j + 1
74 oveq2 n = j + 1 2 n = 2 j + 1
75 74 fveq2d n = j + 1 F 2 n = F 2 j + 1
76 74 75 oveq12d n = j + 1 2 n F 2 n = 2 j + 1 F 2 j + 1
77 73 76 eqeq12d n = j + 1 G n = 2 n F 2 n G j + 1 = 2 j + 1 F 2 j + 1
78 60 adantr φ j n 0 G n = 2 n F 2 n
79 peano2nn j j + 1
80 79 adantl φ j j + 1
81 80 nnnn0d φ j j + 1 0
82 77 78 81 rspcdva φ j G j + 1 = 2 j + 1 F 2 j + 1
83 nnnn0 j j 0
84 83 adantl φ j j 0
85 expp1 2 j 0 2 j + 1 = 2 j 2
86 7 84 85 sylancr φ j 2 j + 1 = 2 j 2
87 nnexpcl 2 j 0 2 j
88 42 83 87 sylancr j 2 j
89 88 adantl φ j 2 j
90 89 nncnd φ j 2 j
91 mulcom 2 j 2 2 j 2 = 2 2 j
92 90 7 91 sylancl φ j 2 j 2 = 2 2 j
93 86 92 eqtrd φ j 2 j + 1 = 2 2 j
94 93 oveq1d φ j 2 j + 1 F 2 j + 1 = 2 2 j F 2 j + 1
95 7 a1i φ j 2
96 fveq2 k = 2 j + 1 F k = F 2 j + 1
97 96 eleq1d k = 2 j + 1 F k F 2 j + 1
98 41 adantr φ j k F k
99 nnexpcl 2 j + 1 0 2 j + 1
100 42 81 99 sylancr φ j 2 j + 1
101 97 98 100 rspcdva φ j F 2 j + 1
102 101 recnd φ j F 2 j + 1
103 95 90 102 mulassd φ j 2 2 j F 2 j + 1 = 2 2 j F 2 j + 1
104 82 94 103 3eqtrd φ j G j + 1 = 2 2 j F 2 j + 1
105 89 nnnn0d φ j 2 j 0
106 hashfz1 2 j 0 1 2 j = 2 j
107 105 106 syl φ j 1 2 j = 2 j
108 107 90 eqeltrd φ j 1 2 j
109 fzfid φ j 2 j + 1 2 j + 1 Fin
110 hashcl 2 j + 1 2 j + 1 Fin 2 j + 1 2 j + 1 0
111 109 110 syl φ j 2 j + 1 2 j + 1 0
112 111 nn0cnd φ j 2 j + 1 2 j + 1
113 simpr φ j j
114 113 nnzd φ j j
115 uzid j j j
116 peano2uz j j j + 1 j
117 2re 2
118 1le2 1 2
119 leexp2a 2 1 2 j + 1 j 2 j 2 j + 1
120 117 118 119 mp3an12 j + 1 j 2 j 2 j + 1
121 114 115 116 120 4syl φ j 2 j 2 j + 1
122 89 65 eleqtrdi φ j 2 j 1
123 100 nnzd φ j 2 j + 1
124 elfz5 2 j 1 2 j + 1 2 j 1 2 j + 1 2 j 2 j + 1
125 122 123 124 syl2anc φ j 2 j 1 2 j + 1 2 j 2 j + 1
126 121 125 mpbird φ j 2 j 1 2 j + 1
127 fzsplit 2 j 1 2 j + 1 1 2 j + 1 = 1 2 j 2 j + 1 2 j + 1
128 126 127 syl φ j 1 2 j + 1 = 1 2 j 2 j + 1 2 j + 1
129 128 fveq2d φ j 1 2 j + 1 = 1 2 j 2 j + 1 2 j + 1
130 90 times2d φ j 2 j 2 = 2 j + 2 j
131 86 130 eqtrd φ j 2 j + 1 = 2 j + 2 j
132 100 nnnn0d φ j 2 j + 1 0
133 hashfz1 2 j + 1 0 1 2 j + 1 = 2 j + 1
134 132 133 syl φ j 1 2 j + 1 = 2 j + 1
135 107 oveq1d φ j 1 2 j + 2 j = 2 j + 2 j
136 131 134 135 3eqtr4d φ j 1 2 j + 1 = 1 2 j + 2 j
137 fzfid φ j 1 2 j Fin
138 89 nnred φ j 2 j
139 138 ltp1d φ j 2 j < 2 j + 1
140 fzdisj 2 j < 2 j + 1 1 2 j 2 j + 1 2 j + 1 =
141 139 140 syl φ j 1 2 j 2 j + 1 2 j + 1 =
142 hashun 1 2 j Fin 2 j + 1 2 j + 1 Fin 1 2 j 2 j + 1 2 j + 1 = 1 2 j 2 j + 1 2 j + 1 = 1 2 j + 2 j + 1 2 j + 1
143 137 109 141 142 syl3anc φ j 1 2 j 2 j + 1 2 j + 1 = 1 2 j + 2 j + 1 2 j + 1
144 129 136 143 3eqtr3d φ j 1 2 j + 2 j = 1 2 j + 2 j + 1 2 j + 1
145 108 90 112 144 addcanad φ j 2 j = 2 j + 1 2 j + 1
146 145 oveq1d φ j 2 j F 2 j + 1 = 2 j + 1 2 j + 1 F 2 j + 1
147 fsumconst 2 j + 1 2 j + 1 Fin F 2 j + 1 k = 2 j + 1 2 j + 1 F 2 j + 1 = 2 j + 1 2 j + 1 F 2 j + 1
148 109 102 147 syl2anc φ j k = 2 j + 1 2 j + 1 F 2 j + 1 = 2 j + 1 2 j + 1 F 2 j + 1
149 146 148 eqtr4d φ j 2 j F 2 j + 1 = k = 2 j + 1 2 j + 1 F 2 j + 1
150 101 adantr φ j k 2 j + 1 2 j + 1 F 2 j + 1
151 simpl φ j φ
152 peano2nn 2 j 2 j + 1
153 89 152 syl φ j 2 j + 1
154 elfzuz k 2 j + 1 2 j + 1 k 2 j + 1
155 eluznn 2 j + 1 k 2 j + 1 k
156 153 154 155 syl2an φ j k 2 j + 1 2 j + 1 k
157 151 156 1 syl2an2r φ j k 2 j + 1 2 j + 1 F k
158 elfzuz3 n 2 j + 1 2 j + 1 2 j + 1 n
159 158 adantl φ j n 2 j + 1 2 j + 1 2 j + 1 n
160 simplll φ j n 2 j + 1 2 j + 1 k n 2 j + 1 φ
161 elfzuz n 2 j + 1 2 j + 1 n 2 j + 1
162 eluznn 2 j + 1 n 2 j + 1 n
163 153 161 162 syl2an φ j n 2 j + 1 2 j + 1 n
164 elfzuz k n 2 j + 1 k n
165 eluznn n k n k
166 163 164 165 syl2an φ j n 2 j + 1 2 j + 1 k n 2 j + 1 k
167 160 166 1 syl2anc φ j n 2 j + 1 2 j + 1 k n 2 j + 1 F k
168 simplll φ j n 2 j + 1 2 j + 1 k n 2 j + 1 1 φ
169 elfzuz k n 2 j + 1 1 k n
170 163 169 165 syl2an φ j n 2 j + 1 2 j + 1 k n 2 j + 1 1 k
171 168 170 3 syl2anc φ j n 2 j + 1 2 j + 1 k n 2 j + 1 1 F k + 1 F k
172 159 167 171 monoord2 φ j n 2 j + 1 2 j + 1 F 2 j + 1 F n
173 172 ralrimiva φ j n 2 j + 1 2 j + 1 F 2 j + 1 F n
174 fveq2 n = k F n = F k
175 174 breq2d n = k F 2 j + 1 F n F 2 j + 1 F k
176 175 rspccva n 2 j + 1 2 j + 1 F 2 j + 1 F n k 2 j + 1 2 j + 1 F 2 j + 1 F k
177 173 176 sylan φ j k 2 j + 1 2 j + 1 F 2 j + 1 F k
178 109 150 157 177 fsumle φ j k = 2 j + 1 2 j + 1 F 2 j + 1 k = 2 j + 1 2 j + 1 F k
179 149 178 eqbrtrd φ j 2 j F 2 j + 1 k = 2 j + 1 2 j + 1 F k
180 138 101 remulcld φ j 2 j F 2 j + 1
181 109 157 fsumrecl φ j k = 2 j + 1 2 j + 1 F k
182 2rp 2 +
183 182 a1i φ j 2 +
184 180 181 183 lemul2d φ j 2 j F 2 j + 1 k = 2 j + 1 2 j + 1 F k 2 2 j F 2 j + 1 2 k = 2 j + 1 2 j + 1 F k
185 179 184 mpbid φ j 2 2 j F 2 j + 1 2 k = 2 j + 1 2 j + 1 F k
186 104 185 eqbrtrd φ j G j + 1 2 k = 2 j + 1 2 j + 1 F k
187 1zzd φ 1
188 nnnn0 n n 0
189 simpr φ n 0 n 0
190 nnexpcl 2 n 0 2 n
191 42 189 190 sylancr φ n 0 2 n
192 191 nnred φ n 0 2 n
193 fveq2 k = 2 n F k = F 2 n
194 193 eleq1d k = 2 n F k F 2 n
195 41 adantr φ n 0 k F k
196 194 195 191 rspcdva φ n 0 F 2 n
197 192 196 remulcld φ n 0 2 n F 2 n
198 4 197 eqeltrd φ n 0 G n
199 188 198 sylan2 φ n G n
200 65 187 199 serfre φ seq 1 + G :
201 200 ffvelrnda φ j seq 1 + G j
202 73 eleq1d n = j + 1 G n G j + 1
203 199 ralrimiva φ n G n
204 203 adantr φ j n G n
205 202 204 80 rspcdva φ j G j + 1
206 65 187 1 serfre φ seq 1 + F :
207 ffvelrn seq 1 + F : 2 j seq 1 + F 2 j
208 206 88 207 syl2an φ j seq 1 + F 2 j
209 remulcl 2 seq 1 + F 2 j 2 seq 1 + F 2 j
210 117 208 209 sylancr φ j 2 seq 1 + F 2 j
211 remulcl 2 k = 2 j + 1 2 j + 1 F k 2 k = 2 j + 1 2 j + 1 F k
212 117 181 211 sylancr φ j 2 k = 2 j + 1 2 j + 1 F k
213 le2add seq 1 + G j G j + 1 2 seq 1 + F 2 j 2 k = 2 j + 1 2 j + 1 F k seq 1 + G j 2 seq 1 + F 2 j G j + 1 2 k = 2 j + 1 2 j + 1 F k seq 1 + G j + G j + 1 2 seq 1 + F 2 j + 2 k = 2 j + 1 2 j + 1 F k
214 201 205 210 212 213 syl22anc φ j seq 1 + G j 2 seq 1 + F 2 j G j + 1 2 k = 2 j + 1 2 j + 1 F k seq 1 + G j + G j + 1 2 seq 1 + F 2 j + 2 k = 2 j + 1 2 j + 1 F k
215 186 214 mpan2d φ j seq 1 + G j 2 seq 1 + F 2 j seq 1 + G j + G j + 1 2 seq 1 + F 2 j + 2 k = 2 j + 1 2 j + 1 F k
216 113 65 eleqtrdi φ j j 1
217 seqp1 j 1 seq 1 + G j + 1 = seq 1 + G j + G j + 1
218 216 217 syl φ j seq 1 + G j + 1 = seq 1 + G j + G j + 1
219 fzfid φ j 1 2 j + 1 Fin
220 elfznn k 1 2 j + 1 k
221 1 recnd φ k F k
222 151 220 221 syl2an φ j k 1 2 j + 1 F k
223 141 128 219 222 fsumsplit φ j k = 1 2 j + 1 F k = k = 1 2 j F k + k = 2 j + 1 2 j + 1 F k
224 eqidd φ j k 1 2 j + 1 F k = F k
225 100 65 eleqtrdi φ j 2 j + 1 1
226 224 225 222 fsumser φ j k = 1 2 j + 1 F k = seq 1 + F 2 j + 1
227 eqidd φ j k 1 2 j F k = F k
228 elfznn k 1 2 j k
229 151 228 221 syl2an φ j k 1 2 j F k
230 227 122 229 fsumser φ j k = 1 2 j F k = seq 1 + F 2 j
231 230 oveq1d φ j k = 1 2 j F k + k = 2 j + 1 2 j + 1 F k = seq 1 + F 2 j + k = 2 j + 1 2 j + 1 F k
232 223 226 231 3eqtr3d φ j seq 1 + F 2 j + 1 = seq 1 + F 2 j + k = 2 j + 1 2 j + 1 F k
233 232 oveq2d φ j 2 seq 1 + F 2 j + 1 = 2 seq 1 + F 2 j + k = 2 j + 1 2 j + 1 F k
234 208 recnd φ j seq 1 + F 2 j
235 181 recnd φ j k = 2 j + 1 2 j + 1 F k
236 95 234 235 adddid φ j 2 seq 1 + F 2 j + k = 2 j + 1 2 j + 1 F k = 2 seq 1 + F 2 j + 2 k = 2 j + 1 2 j + 1 F k
237 233 236 eqtrd φ j 2 seq 1 + F 2 j + 1 = 2 seq 1 + F 2 j + 2 k = 2 j + 1 2 j + 1 F k
238 218 237 breq12d φ j seq 1 + G j + 1 2 seq 1 + F 2 j + 1 seq 1 + G j + G j + 1 2 seq 1 + F 2 j + 2 k = 2 j + 1 2 j + 1 F k
239 215 238 sylibrd φ j seq 1 + G j 2 seq 1 + F 2 j seq 1 + G j + 1 2 seq 1 + F 2 j + 1
240 239 expcom j φ seq 1 + G j 2 seq 1 + F 2 j seq 1 + G j + 1 2 seq 1 + F 2 j + 1
241 240 a2d j φ seq 1 + G j 2 seq 1 + F 2 j φ seq 1 + G j + 1 2 seq 1 + F 2 j + 1
242 14 20 26 32 72 241 nnind N φ seq 1 + G N 2 seq 1 + F 2 N
243 242 impcom φ N seq 1 + G N 2 seq 1 + F 2 N