Metamath Proof Explorer


Theorem climconst2

Description: A constant sequence converges to its value. (Contributed by NM, 6-Feb-2008) (Revised by Mario Carneiro, 31-Jan-2014)

Ref Expression
Hypotheses climconst2.1 M Z
climconst2.2 Z V
Assertion climconst2 A M Z × A A

Proof

Step Hyp Ref Expression
1 climconst2.1 M Z
2 climconst2.2 Z V
3 eqid M = M
4 simpr A M M
5 snex A V
6 2 5 xpex Z × A V
7 6 a1i A M Z × A V
8 simpl A M A
9 1 sseli k M k Z
10 fvconst2g A k Z Z × A k = A
11 8 9 10 syl2an A M k M Z × A k = A
12 3 4 7 8 11 climconst A M Z × A A