Metamath Proof Explorer


Theorem climconstmpt

Description: A constant sequence converges to its value. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses climconstmpt.m φ M
climconstmpt.z Z = M
climconstmpt.a φ A
Assertion climconstmpt φ x Z A A

Proof

Step Hyp Ref Expression
1 climconstmpt.m φ M
2 climconstmpt.z Z = M
3 climconstmpt.a φ A
4 fconstmpt Z × A = x Z A
5 2 eqcomi M = Z
6 ssid Z Z
7 5 6 eqsstri M Z
8 2 fvexi Z V
9 7 8 climconst2 A M Z × A A
10 3 1 9 syl2anc φ Z × A A
11 4 10 eqbrtrrid φ x Z A A