Metamath Proof Explorer


Theorem climd

Description: Express the predicate: The limit of complex number sequence F is A , or F converges to A . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses climd.1 k φ
climd.2 _ k F
climd.3 Z = M
climd.4 φ M
climd.5 φ F A
climd.6 φ k Z F k = B
climd.7 φ X +
Assertion climd φ j Z k j B B A < X

Proof

Step Hyp Ref Expression
1 climd.1 k φ
2 climd.2 _ k F
3 climd.3 Z = M
4 climd.4 φ M
5 climd.5 φ F A
6 climd.6 φ k Z F k = B
7 climd.7 φ X +
8 climrel Rel
9 8 brrelex1i F A F V
10 5 9 syl φ F V
11 1 2 3 4 10 6 clim2f2 φ F A A x + j Z k j B B A < x
12 5 11 mpbid φ A x + j Z k j B B A < x
13 12 simprd φ x + j Z k j B B A < x
14 breq2 x = X B A < x B A < X
15 14 anbi2d x = X B B A < x B B A < X
16 15 rexralbidv x = X j Z k j B B A < x j Z k j B B A < X
17 16 rspcva X + x + j Z k j B B A < x j Z k j B B A < X
18 7 13 17 syl2anc φ j Z k j B B A < X