Metamath Proof Explorer


Theorem climdivf

Description: Limit of the ratio of two converging sequences. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses climdivf.1 k φ
climdivf.2 _ k F
climdivf.3 _ k G
climdivf.4 _ k H
climdivf.5 Z = M
climdivf.6 φ M
climdivf.7 φ F A
climdivf.8 φ H X
climdivf.9 φ G B
climdivf.10 φ B 0
climdivf.11 φ k Z F k
climdivf.12 φ k Z G k 0
climdivf.13 φ k Z H k = F k G k
Assertion climdivf φ H A B

Proof

Step Hyp Ref Expression
1 climdivf.1 k φ
2 climdivf.2 _ k F
3 climdivf.3 _ k G
4 climdivf.4 _ k H
5 climdivf.5 Z = M
6 climdivf.6 φ M
7 climdivf.7 φ F A
8 climdivf.8 φ H X
9 climdivf.9 φ G B
10 climdivf.10 φ B 0
11 climdivf.11 φ k Z F k
12 climdivf.12 φ k Z G k 0
13 climdivf.13 φ k Z H k = F k G k
14 nfmpt1 _ k k Z 1 G k
15 simpr φ k Z k Z
16 12 eldifad φ k Z G k
17 eldifsni G k 0 G k 0
18 12 17 syl φ k Z G k 0
19 16 18 reccld φ k Z 1 G k
20 eqid k Z 1 G k = k Z 1 G k
21 20 fvmpt2 k Z 1 G k k Z 1 G k k = 1 G k
22 15 19 21 syl2anc φ k Z k Z 1 G k k = 1 G k
23 5 fvexi Z V
24 23 mptex k Z 1 G k V
25 24 a1i φ k Z 1 G k V
26 1 3 14 5 6 9 10 12 22 25 climrecf φ k Z 1 G k 1 B
27 22 19 eqeltrd φ k Z k Z 1 G k k
28 11 16 18 divrecd φ k Z F k G k = F k 1 G k
29 22 eqcomd φ k Z 1 G k = k Z 1 G k k
30 29 oveq2d φ k Z F k 1 G k = F k k Z 1 G k k
31 13 28 30 3eqtrd φ k Z H k = F k k Z 1 G k k
32 1 2 14 4 5 6 7 8 26 11 27 31 climmulf φ H A 1 B
33 climcl F A A
34 7 33 syl φ A
35 climcl G B B
36 9 35 syl φ B
37 34 36 10 divrecd φ A B = A 1 B
38 32 37 breqtrrd φ H A B