Metamath Proof Explorer


Theorem climeldmeq

Description: Two functions that are eventually equal, either both are convergent or both are divergent. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses climeldmeq.z Z = M
climeldmeq.f φ F V
climeldmeq.g φ G W
climeldmeq.m φ M
climeldmeq.e φ k Z F k = G k
Assertion climeldmeq φ F dom G dom

Proof

Step Hyp Ref Expression
1 climeldmeq.z Z = M
2 climeldmeq.f φ F V
3 climeldmeq.g φ G W
4 climeldmeq.m φ M
5 climeldmeq.e φ k Z F k = G k
6 3 adantr φ F dom G W
7 fvexd φ F dom F V
8 climdm F dom F F
9 8 a1i φ F dom F F
10 9 biimpa φ F dom F F
11 1 2 3 4 5 climeq φ F F G F
12 11 adantr φ F dom F F G F
13 10 12 mpbid φ F dom G F
14 breldmg G W F V G F G dom
15 6 7 13 14 syl3anc φ F dom G dom
16 15 ex φ F dom G dom
17 2 adantr φ G dom F V
18 fvexd φ G dom G V
19 climdm G dom G G
20 19 biimpi G dom G G
21 20 adantl φ G dom G G
22 5 eqcomd φ k Z G k = F k
23 1 3 2 4 22 climeq φ G G F G
24 23 adantr φ G dom G G F G
25 21 24 mpbid φ G dom F G
26 breldmg F V G V F G F dom
27 17 18 25 26 syl3anc φ G dom F dom
28 27 ex φ G dom F dom
29 16 28 impbid φ F dom G dom