Metamath Proof Explorer


Theorem climeldmeqf

Description: Two functions that are eventually equal, either both are convergent or both are divergent. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses climeldmeqf.p k φ
climeldmeqf.n _ k F
climeldmeqf.o _ k G
climeldmeqf.z Z = M
climeldmeqf.f φ F V
climeldmeqf.g φ G W
climeldmeqf.m φ M
climeldmeqf.e φ k Z F k = G k
Assertion climeldmeqf φ F dom G dom

Proof

Step Hyp Ref Expression
1 climeldmeqf.p k φ
2 climeldmeqf.n _ k F
3 climeldmeqf.o _ k G
4 climeldmeqf.z Z = M
5 climeldmeqf.f φ F V
6 climeldmeqf.g φ G W
7 climeldmeqf.m φ M
8 climeldmeqf.e φ k Z F k = G k
9 nfv k j Z
10 1 9 nfan k φ j Z
11 nfcv _ k j
12 2 11 nffv _ k F j
13 3 11 nffv _ k G j
14 12 13 nfeq k F j = G j
15 10 14 nfim k φ j Z F j = G j
16 eleq1w k = j k Z j Z
17 16 anbi2d k = j φ k Z φ j Z
18 fveq2 k = j F k = F j
19 fveq2 k = j G k = G j
20 18 19 eqeq12d k = j F k = G k F j = G j
21 17 20 imbi12d k = j φ k Z F k = G k φ j Z F j = G j
22 15 21 8 chvarfv φ j Z F j = G j
23 4 5 6 7 22 climeldmeq φ F dom G dom