Metamath Proof Explorer


Theorem climeldmeqmpt

Description: Two functions that are eventually equal, either both are convergent or both are divergent. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses climeldmeqmpt.k k φ
climeldmeqmpt.m φ M
climeldmeqmpt.z Z = M
climeldmeqmpt.a φ A R
climeldmeqmpt.i φ Z A
climeldmeqmpt.b φ k A B V
climeldmeqmpt.t φ C S
climeldmeqmpt.l φ Z C
climeldmeqmpt.c φ k C D W
climeldmeqmpt.e φ k Z B = D
Assertion climeldmeqmpt φ k A B dom k C D dom

Proof

Step Hyp Ref Expression
1 climeldmeqmpt.k k φ
2 climeldmeqmpt.m φ M
3 climeldmeqmpt.z Z = M
4 climeldmeqmpt.a φ A R
5 climeldmeqmpt.i φ Z A
6 climeldmeqmpt.b φ k A B V
7 climeldmeqmpt.t φ C S
8 climeldmeqmpt.l φ Z C
9 climeldmeqmpt.c φ k C D W
10 climeldmeqmpt.e φ k Z B = D
11 4 mptexd φ k A B V
12 7 mptexd φ k C D V
13 nfv k j Z
14 1 13 nfan k φ j Z
15 nfcsb1v _ k j / k B
16 nfcv _ k j
17 16 nfcsb1 _ k j / k D
18 15 17 nfeq k j / k B = j / k D
19 14 18 nfim k φ j Z j / k B = j / k D
20 eleq1w k = j k Z j Z
21 20 anbi2d k = j φ k Z φ j Z
22 csbeq1a k = j B = j / k B
23 csbeq1a k = j D = j / k D
24 22 23 eqeq12d k = j B = D j / k B = j / k D
25 21 24 imbi12d k = j φ k Z B = D φ j Z j / k B = j / k D
26 19 25 10 chvarfv φ j Z j / k B = j / k D
27 5 sselda φ j Z j A
28 nfv k j A
29 1 28 nfan k φ j A
30 nfcv _ k V
31 15 30 nfel k j / k B V
32 29 31 nfim k φ j A j / k B V
33 eleq1w k = j k A j A
34 33 anbi2d k = j φ k A φ j A
35 22 eleq1d k = j B V j / k B V
36 34 35 imbi12d k = j φ k A B V φ j A j / k B V
37 32 36 6 chvarfv φ j A j / k B V
38 27 37 syldan φ j Z j / k B V
39 16 nfcsb1 _ k j / k B
40 eqid k A B = k A B
41 16 39 22 40 fvmptf j A j / k B V k A B j = j / k B
42 27 38 41 syl2anc φ j Z k A B j = j / k B
43 8 sselda φ j Z j C
44 nfv k j C
45 1 44 nfan k φ j C
46 nfcv _ k W
47 17 46 nfel k j / k D W
48 45 47 nfim k φ j C j / k D W
49 eleq1w k = j k C j C
50 49 anbi2d k = j φ k C φ j C
51 23 eleq1d k = j D W j / k D W
52 50 51 imbi12d k = j φ k C D W φ j C j / k D W
53 48 52 9 chvarfv φ j C j / k D W
54 43 53 syldan φ j Z j / k D W
55 eqid k C D = k C D
56 16 17 23 55 fvmptf j C j / k D W k C D j = j / k D
57 43 54 56 syl2anc φ j Z k C D j = j / k D
58 26 42 57 3eqtr4d φ j Z k A B j = k C D j
59 3 11 12 2 58 climeldmeq φ k A B dom k C D dom