Metamath Proof Explorer


Theorem climeldmeqmpt3

Description: Two functions that are eventually equal, either both are convergent or both are divergent. TODO: this is more general than climeldmeqmpt and should replace it. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses climeldmeqmpt3.k k φ
climeldmeqmpt3.m φ M
climeldmeqmpt3.z Z = M
climeldmeqmpt3.a φ A V
climeldmeqmpt3.c φ C W
climeldmeqmpt3.i φ Z A
climeldmeqmpt3.s φ Z C
climeldmeqmpt3.b φ k Z B U
climeldmeqmpt3.e φ k Z B = D
Assertion climeldmeqmpt3 φ k A B dom k C D dom

Proof

Step Hyp Ref Expression
1 climeldmeqmpt3.k k φ
2 climeldmeqmpt3.m φ M
3 climeldmeqmpt3.z Z = M
4 climeldmeqmpt3.a φ A V
5 climeldmeqmpt3.c φ C W
6 climeldmeqmpt3.i φ Z A
7 climeldmeqmpt3.s φ Z C
8 climeldmeqmpt3.b φ k Z B U
9 climeldmeqmpt3.e φ k Z B = D
10 4 mptexd φ k A B V
11 5 mptexd φ k C D V
12 nfv k j Z
13 1 12 nfan k φ j Z
14 nfcsb1v _ k j / k B
15 nfcv _ k j
16 15 nfcsb1 _ k j / k D
17 14 16 nfeq k j / k B = j / k D
18 13 17 nfim k φ j Z j / k B = j / k D
19 eleq1w k = j k Z j Z
20 19 anbi2d k = j φ k Z φ j Z
21 csbeq1a k = j B = j / k B
22 csbeq1a k = j D = j / k D
23 21 22 eqeq12d k = j B = D j / k B = j / k D
24 20 23 imbi12d k = j φ k Z B = D φ j Z j / k B = j / k D
25 18 24 9 chvarfv φ j Z j / k B = j / k D
26 6 sselda φ j Z j A
27 nfcv _ k U
28 14 27 nfel k j / k B U
29 13 28 nfim k φ j Z j / k B U
30 21 eleq1d k = j B U j / k B U
31 20 30 imbi12d k = j φ k Z B U φ j Z j / k B U
32 29 31 8 chvarfv φ j Z j / k B U
33 15 nfcsb1 _ k j / k B
34 eqid k A B = k A B
35 15 33 21 34 fvmptf j A j / k B U k A B j = j / k B
36 26 32 35 syl2anc φ j Z k A B j = j / k B
37 7 sselda φ j Z j C
38 25 32 eqeltrrd φ j Z j / k D U
39 eqid k C D = k C D
40 15 16 22 39 fvmptf j C j / k D U k C D j = j / k D
41 37 38 40 syl2anc φ j Z k C D j = j / k D
42 25 36 41 3eqtr4d φ j Z k A B j = k C D j
43 3 10 11 2 42 climeldmeq φ k A B dom k C D dom