Metamath Proof Explorer


Theorem climeq

Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Mario Carneiro, 5-Nov-2013) (Revised by Mario Carneiro, 31-Jan-2014)

Ref Expression
Hypotheses climeq.1 Z = M
climeq.2 φ F V
climeq.3 φ G W
climeq.5 φ M
climeq.6 φ k Z F k = G k
Assertion climeq φ F A G A

Proof

Step Hyp Ref Expression
1 climeq.1 Z = M
2 climeq.2 φ F V
3 climeq.3 φ G W
4 climeq.5 φ M
5 climeq.6 φ k Z F k = G k
6 1 4 2 5 clim2 φ F A A x + y Z k y G k G k A < x
7 eqidd φ k Z G k = G k
8 1 4 3 7 clim2 φ G A A x + y Z k y G k G k A < x
9 6 8 bitr4d φ F A G A