Metamath Proof Explorer


Theorem climeqf

Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses climeqf.p k φ
climeqf.k _ k F
climeqf.n _ k G
climeqf.m φ M
climeqf.z Z = M
climeqf.f φ F V
climeqf.g φ G W
climeqf.e φ k Z F k = G k
Assertion climeqf φ F A G A

Proof

Step Hyp Ref Expression
1 climeqf.p k φ
2 climeqf.k _ k F
3 climeqf.n _ k G
4 climeqf.m φ M
5 climeqf.z Z = M
6 climeqf.f φ F V
7 climeqf.g φ G W
8 climeqf.e φ k Z F k = G k
9 nfv k j Z
10 1 9 nfan k φ j Z
11 nfcv _ k j
12 2 11 nffv _ k F j
13 3 11 nffv _ k G j
14 12 13 nfeq k F j = G j
15 10 14 nfim k φ j Z F j = G j
16 eleq1w k = j k Z j Z
17 16 anbi2d k = j φ k Z φ j Z
18 fveq2 k = j F k = F j
19 fveq2 k = j G k = G j
20 18 19 eqeq12d k = j F k = G k F j = G j
21 17 20 imbi12d k = j φ k Z F k = G k φ j Z F j = G j
22 15 21 8 chvarfv φ j Z F j = G j
23 5 6 7 4 22 climeq φ F A G A