Metamath Proof Explorer


Theorem climexp

Description: The limit of natural powers, is the natural power of the limit. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses climexp.1 k φ
climexp.2 _ k F
climexp.3 _ k H
climexp.4 Z = M
climexp.5 φ M
climexp.6 φ F : Z
climexp.7 φ F A
climexp.8 φ N 0
climexp.9 φ H V
climexp.10 φ k Z H k = F k N
Assertion climexp φ H A N

Proof

Step Hyp Ref Expression
1 climexp.1 k φ
2 climexp.2 _ k F
3 climexp.3 _ k H
4 climexp.4 Z = M
5 climexp.5 φ M
6 climexp.6 φ F : Z
7 climexp.7 φ F A
8 climexp.8 φ N 0
9 climexp.9 φ H V
10 climexp.10 φ k Z H k = F k N
11 eqid TopOpen fld = TopOpen fld
12 11 expcn N 0 x x N TopOpen fld Cn TopOpen fld
13 8 12 syl φ x x N TopOpen fld Cn TopOpen fld
14 11 cncfcn1 cn = TopOpen fld Cn TopOpen fld
15 13 14 eleqtrrdi φ x x N : cn
16 climcl F A A
17 7 16 syl φ A
18 4 5 15 6 7 17 climcncf φ x x N F x x N A
19 eqidd φ x x N = x x N
20 simpr φ x = A x = A
21 20 oveq1d φ x = A x N = A N
22 17 8 expcld φ A N
23 19 21 17 22 fvmptd φ x x N A = A N
24 18 23 breqtrd φ x x N F A N
25 cnex V
26 25 mptex x x N V
27 4 fvexi Z V
28 fex F : Z Z V F V
29 6 27 28 sylancl φ F V
30 coexg x x N V F V x x N F V
31 26 29 30 sylancr φ x x N F V
32 eqidd φ j Z x x N = x x N
33 simpr φ j Z x = F j x = F j
34 33 oveq1d φ j Z x = F j x N = F j N
35 6 ffvelrnda φ j Z F j
36 8 adantr φ j Z N 0
37 35 36 expcld φ j Z F j N
38 32 34 35 37 fvmptd φ j Z x x N F j = F j N
39 fvco3 F : Z j Z x x N F j = x x N F j
40 6 39 sylan φ j Z x x N F j = x x N F j
41 nfv k j Z
42 1 41 nfan k φ j Z
43 nfcv _ k j
44 3 43 nffv _ k H j
45 2 43 nffv _ k F j
46 nfcv _ k ^
47 nfcv _ k N
48 45 46 47 nfov _ k F j N
49 44 48 nfeq k H j = F j N
50 42 49 nfim k φ j Z H j = F j N
51 eleq1w k = j k Z j Z
52 51 anbi2d k = j φ k Z φ j Z
53 fveq2 k = j H k = H j
54 fveq2 k = j F k = F j
55 54 oveq1d k = j F k N = F j N
56 53 55 eqeq12d k = j H k = F k N H j = F j N
57 52 56 imbi12d k = j φ k Z H k = F k N φ j Z H j = F j N
58 50 57 10 chvarfv φ j Z H j = F j N
59 38 40 58 3eqtr4rd φ j Z H j = x x N F j
60 4 9 31 5 59 climeq φ H A N x x N F A N
61 24 60 mpbird φ H A N