Step |
Hyp |
Ref |
Expression |
1 |
|
climf.nf |
|
2 |
|
climf.f |
|
3 |
|
climf.fv |
|
4 |
|
climrel |
|
5 |
4
|
brrelex2i |
|
6 |
5
|
a1i |
|
7 |
|
elex |
|
8 |
7
|
adantr |
|
9 |
8
|
a1i |
|
10 |
|
simpr |
|
11 |
10
|
eleq1d |
|
12 |
|
nfv |
|
13 |
1
|
nfeq2 |
|
14 |
|
nfv |
|
15 |
13 14
|
nfan |
|
16 |
|
fveq1 |
|
17 |
16
|
adantr |
|
18 |
17
|
eleq1d |
|
19 |
|
oveq12 |
|
20 |
16 19
|
sylan |
|
21 |
20
|
fveq2d |
|
22 |
21
|
breq1d |
|
23 |
18 22
|
anbi12d |
|
24 |
15 23
|
ralbid |
|
25 |
24
|
rexbidv |
|
26 |
12 25
|
ralbid |
|
27 |
11 26
|
anbi12d |
|
28 |
|
df-clim |
|
29 |
27 28
|
brabga |
|
30 |
29
|
ex |
|
31 |
2 30
|
syl |
|
32 |
6 9 31
|
pm5.21ndd |
|
33 |
|
eluzelz |
|
34 |
3
|
eleq1d |
|
35 |
3
|
fvoveq1d |
|
36 |
35
|
breq1d |
|
37 |
34 36
|
anbi12d |
|
38 |
33 37
|
sylan2 |
|
39 |
38
|
ralbidva |
|
40 |
39
|
rexbidv |
|
41 |
40
|
ralbidv |
|
42 |
41
|
anbi2d |
|
43 |
32 42
|
bitrd |
|