Metamath Proof Explorer


Theorem climf2

Description: Express the predicate: The limit of complex number sequence F is A , or F converges to A . Similar to clim , but without the disjoint var constraint ph k and F k . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses climf2.1 k φ
climf2.nf _ k F
climf2.f φ F V
climf2.fv φ k F k = B
Assertion climf2 φ F A A x + j k j B B A < x

Proof

Step Hyp Ref Expression
1 climf2.1 k φ
2 climf2.nf _ k F
3 climf2.f φ F V
4 climf2.fv φ k F k = B
5 climrel Rel
6 5 brrelex2i F A A V
7 6 a1i φ F A A V
8 elex A A V
9 8 adantr A x + j k j F k F k A < x A V
10 9 a1i φ A x + j k j F k F k A < x A V
11 simpr f = F y = A y = A
12 11 eleq1d f = F y = A y A
13 nfv x f = F y = A
14 2 nfeq2 k f = F
15 nfv k y = A
16 14 15 nfan k f = F y = A
17 fveq1 f = F f k = F k
18 17 adantr f = F y = A f k = F k
19 18 eleq1d f = F y = A f k F k
20 oveq12 f k = F k y = A f k y = F k A
21 17 20 sylan f = F y = A f k y = F k A
22 21 fveq2d f = F y = A f k y = F k A
23 22 breq1d f = F y = A f k y < x F k A < x
24 19 23 anbi12d f = F y = A f k f k y < x F k F k A < x
25 16 24 ralbid f = F y = A k j f k f k y < x k j F k F k A < x
26 25 rexbidv f = F y = A j k j f k f k y < x j k j F k F k A < x
27 13 26 ralbid f = F y = A x + j k j f k f k y < x x + j k j F k F k A < x
28 12 27 anbi12d f = F y = A y x + j k j f k f k y < x A x + j k j F k F k A < x
29 df-clim = f y | y x + j k j f k f k y < x
30 28 29 brabga F V A V F A A x + j k j F k F k A < x
31 30 ex F V A V F A A x + j k j F k F k A < x
32 3 31 syl φ A V F A A x + j k j F k F k A < x
33 7 10 32 pm5.21ndd φ F A A x + j k j F k F k A < x
34 eluzelz k j k
35 4 eleq1d φ k F k B
36 4 fvoveq1d φ k F k A = B A
37 36 breq1d φ k F k A < x B A < x
38 35 37 anbi12d φ k F k F k A < x B B A < x
39 34 38 sylan2 φ k j F k F k A < x B B A < x
40 1 39 ralbida φ k j F k F k A < x k j B B A < x
41 40 rexbidv φ j k j F k F k A < x j k j B B A < x
42 41 ralbidv φ x + j k j F k F k A < x x + j k j B B A < x
43 42 anbi2d φ A x + j k j F k F k A < x A x + j k j B B A < x
44 33 43 bitrd φ F A A x + j k j B B A < x