Metamath Proof Explorer


Theorem climfv

Description: The limit of a convergent sequence, expressed as the function value of the convergence relation. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Assertion climfv F A A = F

Proof

Step Hyp Ref Expression
1 id F A F A
2 climrel Rel
3 2 a1i F A Rel
4 brrelex1 Rel F A F V
5 3 1 4 syl2anc F A F V
6 brrelex2 Rel F A A V
7 3 1 6 syl2anc F A A V
8 breldmg F V A V F A F dom
9 5 7 1 8 syl3anc F A F dom
10 climdm F dom F F
11 9 10 sylib F A F F
12 climuni F A F F A = F
13 1 11 12 syl2anc F A A = F