Metamath Proof Explorer


Theorem climfveqf

Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses climfveqf.p k φ
climfveqf.n _ k F
climfveqf.o _ k G
climfveqf.z Z = M
climfveqf.f φ F V
climfveqf.g φ G W
climfveqf.m φ M
climfveqf.e φ k Z F k = G k
Assertion climfveqf φ F = G

Proof

Step Hyp Ref Expression
1 climfveqf.p k φ
2 climfveqf.n _ k F
3 climfveqf.o _ k G
4 climfveqf.z Z = M
5 climfveqf.f φ F V
6 climfveqf.g φ G W
7 climfveqf.m φ M
8 climfveqf.e φ k Z F k = G k
9 climdm F dom F F
10 9 biimpi F dom F F
11 10 adantl φ F dom F F
12 11 9 sylibr φ F dom F dom
13 nfcv _ k j
14 13 nfel1 k j Z
15 1 14 nfan k φ j Z
16 2 13 nffv _ k F j
17 3 13 nffv _ k G j
18 16 17 nfeq k F j = G j
19 15 18 nfim k φ j Z F j = G j
20 eleq1w k = j k Z j Z
21 20 anbi2d k = j φ k Z φ j Z
22 fveq2 k = j F k = F j
23 fveq2 k = j G k = G j
24 22 23 eqeq12d k = j F k = G k F j = G j
25 21 24 imbi12d k = j φ k Z F k = G k φ j Z F j = G j
26 19 25 8 chvarfv φ j Z F j = G j
27 4 5 6 7 26 climeldmeq φ F dom G dom
28 27 adantr φ F dom F dom G dom
29 12 28 mpbid φ F dom G dom
30 climdm G dom G G
31 29 30 sylib φ F dom G G
32 6 adantr φ F dom G W
33 5 adantr φ F dom F V
34 7 adantr φ F dom M
35 26 eqcomd φ j Z G j = F j
36 35 adantlr φ F dom j Z G j = F j
37 4 32 33 34 36 climeq φ F dom G G F G
38 31 37 mpbid φ F dom F G
39 climuni F F F G F = G
40 11 38 39 syl2anc φ F dom F = G
41 ndmfv ¬ F dom F =
42 41 adantl φ ¬ F dom F =
43 simpr φ ¬ F dom ¬ F dom
44 27 adantr φ ¬ F dom F dom G dom
45 43 44 mtbid φ ¬ F dom ¬ G dom
46 ndmfv ¬ G dom G =
47 45 46 syl φ ¬ F dom G =
48 42 47 eqtr4d φ ¬ F dom F = G
49 40 48 pm2.61dan φ F = G