Step |
Hyp |
Ref |
Expression |
1 |
|
climfveqmpt.k |
|
2 |
|
climfveqmpt.m |
|
3 |
|
climfveqmpt.z |
|
4 |
|
climfveqmpt.A |
|
5 |
|
climfveqmpt.i |
|
6 |
|
climfveqmpt.b |
|
7 |
|
climfveqmpt.t |
|
8 |
|
climfveqmpt.l |
|
9 |
|
climfveqmpt.c |
|
10 |
|
climfveqmpt.e |
|
11 |
4
|
mptexd |
|
12 |
7
|
mptexd |
|
13 |
|
nfv |
|
14 |
1 13
|
nfan |
|
15 |
|
nfcv |
|
16 |
15
|
nfcsb1 |
|
17 |
15
|
nfcsb1 |
|
18 |
16 17
|
nfeq |
|
19 |
14 18
|
nfim |
|
20 |
|
eleq1w |
|
21 |
20
|
anbi2d |
|
22 |
|
csbeq1a |
|
23 |
|
csbeq1a |
|
24 |
22 23
|
eqeq12d |
|
25 |
21 24
|
imbi12d |
|
26 |
19 25 10
|
chvarfv |
|
27 |
5
|
adantr |
|
28 |
|
simpr |
|
29 |
27 28
|
sseldd |
|
30 |
|
simpr |
|
31 |
|
nfv |
|
32 |
1 31
|
nfan |
|
33 |
|
nfcv |
|
34 |
16 33
|
nfel |
|
35 |
32 34
|
nfim |
|
36 |
|
eleq1w |
|
37 |
36
|
anbi2d |
|
38 |
22
|
eleq1d |
|
39 |
37 38
|
imbi12d |
|
40 |
35 39 6
|
chvarfv |
|
41 |
|
eqid |
|
42 |
15 16 22 41
|
fvmptf |
|
43 |
30 40 42
|
syl2anc |
|
44 |
29 43
|
syldan |
|
45 |
8
|
adantr |
|
46 |
45 28
|
sseldd |
|
47 |
|
simpr |
|
48 |
|
nfv |
|
49 |
1 48
|
nfan |
|
50 |
|
nfcv |
|
51 |
17 50
|
nfel |
|
52 |
49 51
|
nfim |
|
53 |
|
eleq1w |
|
54 |
53
|
anbi2d |
|
55 |
23
|
eleq1d |
|
56 |
54 55
|
imbi12d |
|
57 |
52 56 9
|
chvarfv |
|
58 |
|
eqid |
|
59 |
15 17 23 58
|
fvmptf |
|
60 |
47 57 59
|
syl2anc |
|
61 |
46 60
|
syldan |
|
62 |
26 44 61
|
3eqtr4d |
|
63 |
3 11 12 2 62
|
climfveq |
|