Metamath Proof Explorer


Theorem climfveqmpt

Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses climfveqmpt.k k φ
climfveqmpt.m φ M
climfveqmpt.z Z = M
climfveqmpt.A φ A R
climfveqmpt.i φ Z A
climfveqmpt.b φ k A B V
climfveqmpt.t φ C S
climfveqmpt.l φ Z C
climfveqmpt.c φ k C D W
climfveqmpt.e φ k Z B = D
Assertion climfveqmpt φ k A B = k C D

Proof

Step Hyp Ref Expression
1 climfveqmpt.k k φ
2 climfveqmpt.m φ M
3 climfveqmpt.z Z = M
4 climfveqmpt.A φ A R
5 climfveqmpt.i φ Z A
6 climfveqmpt.b φ k A B V
7 climfveqmpt.t φ C S
8 climfveqmpt.l φ Z C
9 climfveqmpt.c φ k C D W
10 climfveqmpt.e φ k Z B = D
11 4 mptexd φ k A B V
12 7 mptexd φ k C D V
13 nfv k j Z
14 1 13 nfan k φ j Z
15 nfcv _ k j
16 15 nfcsb1 _ k j / k B
17 15 nfcsb1 _ k j / k D
18 16 17 nfeq k j / k B = j / k D
19 14 18 nfim k φ j Z j / k B = j / k D
20 eleq1w k = j k Z j Z
21 20 anbi2d k = j φ k Z φ j Z
22 csbeq1a k = j B = j / k B
23 csbeq1a k = j D = j / k D
24 22 23 eqeq12d k = j B = D j / k B = j / k D
25 21 24 imbi12d k = j φ k Z B = D φ j Z j / k B = j / k D
26 19 25 10 chvarfv φ j Z j / k B = j / k D
27 5 adantr φ j Z Z A
28 simpr φ j Z j Z
29 27 28 sseldd φ j Z j A
30 simpr φ j A j A
31 nfv k j A
32 1 31 nfan k φ j A
33 nfcv _ k V
34 16 33 nfel k j / k B V
35 32 34 nfim k φ j A j / k B V
36 eleq1w k = j k A j A
37 36 anbi2d k = j φ k A φ j A
38 22 eleq1d k = j B V j / k B V
39 37 38 imbi12d k = j φ k A B V φ j A j / k B V
40 35 39 6 chvarfv φ j A j / k B V
41 eqid k A B = k A B
42 15 16 22 41 fvmptf j A j / k B V k A B j = j / k B
43 30 40 42 syl2anc φ j A k A B j = j / k B
44 29 43 syldan φ j Z k A B j = j / k B
45 8 adantr φ j Z Z C
46 45 28 sseldd φ j Z j C
47 simpr φ j C j C
48 nfv k j C
49 1 48 nfan k φ j C
50 nfcv _ k W
51 17 50 nfel k j / k D W
52 49 51 nfim k φ j C j / k D W
53 eleq1w k = j k C j C
54 53 anbi2d k = j φ k C φ j C
55 23 eleq1d k = j D W j / k D W
56 54 55 imbi12d k = j φ k C D W φ j C j / k D W
57 52 56 9 chvarfv φ j C j / k D W
58 eqid k C D = k C D
59 15 17 23 58 fvmptf j C j / k D W k C D j = j / k D
60 47 57 59 syl2anc φ j C k C D j = j / k D
61 46 60 syldan φ j Z k C D j = j / k D
62 26 44 61 3eqtr4d φ j Z k A B j = k C D j
63 3 11 12 2 62 climfveq φ k A B = k C D