Metamath Proof Explorer


Theorem climfveqmpt3

Description: Two functions that are eventually equal to one another have the same limit. TODO: this is more general than climfveqmpt and should replace it. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses climfveqmpt3.k k φ
climfveqmpt3.m φ M
climfveqmpt3.z Z = M
climfveqmpt3.a φ A V
climfveqmpt3.c φ C W
climfveqmpt3.i φ Z A
climfveqmpt3.s φ Z C
climfveqmpt3.b φ k Z B U
climfveqmpt3.d φ k Z B = D
Assertion climfveqmpt3 φ k A B = k C D

Proof

Step Hyp Ref Expression
1 climfveqmpt3.k k φ
2 climfveqmpt3.m φ M
3 climfveqmpt3.z Z = M
4 climfveqmpt3.a φ A V
5 climfveqmpt3.c φ C W
6 climfveqmpt3.i φ Z A
7 climfveqmpt3.s φ Z C
8 climfveqmpt3.b φ k Z B U
9 climfveqmpt3.d φ k Z B = D
10 4 mptexd φ k A B V
11 5 mptexd φ k C D V
12 nfv k j Z
13 1 12 nfan k φ j Z
14 nfcv _ k j
15 14 nfcsb1 _ k j / k B
16 14 nfcsb1 _ k j / k D
17 15 16 nfeq k j / k B = j / k D
18 13 17 nfim k φ j Z j / k B = j / k D
19 eleq1w k = j k Z j Z
20 19 anbi2d k = j φ k Z φ j Z
21 csbeq1a k = j B = j / k B
22 csbeq1a k = j D = j / k D
23 21 22 eqeq12d k = j B = D j / k B = j / k D
24 20 23 imbi12d k = j φ k Z B = D φ j Z j / k B = j / k D
25 18 24 9 chvarfv φ j Z j / k B = j / k D
26 6 adantr φ j Z Z A
27 simpr φ j Z j Z
28 26 27 sseldd φ j Z j A
29 nfcv _ k U
30 15 29 nfel k j / k B U
31 13 30 nfim k φ j Z j / k B U
32 21 eleq1d k = j B U j / k B U
33 20 32 imbi12d k = j φ k Z B U φ j Z j / k B U
34 31 33 8 chvarfv φ j Z j / k B U
35 eqid k A B = k A B
36 14 15 21 35 fvmptf j A j / k B U k A B j = j / k B
37 28 34 36 syl2anc φ j Z k A B j = j / k B
38 7 adantr φ j Z Z C
39 38 27 sseldd φ j Z j C
40 25 34 eqeltrrd φ j Z j / k D U
41 eqid k C D = k C D
42 14 16 22 41 fvmptf j C j / k D U k C D j = j / k D
43 39 40 42 syl2anc φ j Z k C D j = j / k D
44 25 37 43 3eqtr4d φ j Z k A B j = k C D j
45 3 10 11 2 44 climfveq φ k A B = k C D