Metamath Proof Explorer


Theorem climge0

Description: A nonnegative sequence converges to a nonnegative number. (Contributed by NM, 11-Sep-2005) (Proof shortened by Mario Carneiro, 10-May-2016)

Ref Expression
Hypotheses climshft2.1 Z = M
climshft2.2 φ M
climrecl.3 φ F A
climrecl.4 φ k Z F k
climge0.5 φ k Z 0 F k
Assertion climge0 φ 0 A

Proof

Step Hyp Ref Expression
1 climshft2.1 Z = M
2 climshft2.2 φ M
3 climrecl.3 φ F A
4 climrecl.4 φ k Z F k
5 climge0.5 φ k Z 0 F k
6 1 uzsup M sup Z * < = +∞
7 2 6 syl φ sup Z * < = +∞
8 climrel Rel
9 8 brrelex1i F A F V
10 3 9 syl φ F V
11 eqid k Z F k = k Z F k
12 1 11 climmpt M F V F A k Z F k A
13 2 10 12 syl2anc φ F A k Z F k A
14 3 13 mpbid φ k Z F k A
15 4 recnd φ k Z F k
16 15 fmpttd φ k Z F k : Z
17 1 2 16 rlimclim φ k Z F k A k Z F k A
18 14 17 mpbird φ k Z F k A
19 7 18 4 5 rlimge0 φ 0 A