Metamath Proof Explorer


Theorem climi

Description: Convergence of a sequence of complex numbers. (Contributed by NM, 11-Jan-2007) (Revised by Mario Carneiro, 31-Jan-2014)

Ref Expression
Hypotheses climi.1 Z = M
climi.2 φ M
climi.3 φ C +
climi.4 φ k Z F k = B
climi.5 φ F A
Assertion climi φ j Z k j B B A < C

Proof

Step Hyp Ref Expression
1 climi.1 Z = M
2 climi.2 φ M
3 climi.3 φ C +
4 climi.4 φ k Z F k = B
5 climi.5 φ F A
6 breq2 x = C B A < x B A < C
7 6 anbi2d x = C B B A < x B B A < C
8 7 rexralbidv x = C j Z k j B B A < x j Z k j B B A < C
9 climrel Rel
10 9 brrelex1i F A F V
11 5 10 syl φ F V
12 1 2 11 4 clim2 φ F A A x + j Z k j B B A < x
13 5 12 mpbid φ A x + j Z k j B B A < x
14 13 simprd φ x + j Z k j B B A < x
15 8 14 3 rspcdva φ j Z k j B B A < C