Metamath Proof Explorer


Theorem climi0

Description: Convergence of a sequence of complex numbers to zero. (Contributed by NM, 11-Jan-2007) (Revised by Mario Carneiro, 31-Jan-2014)

Ref Expression
Hypotheses climi.1 Z = M
climi.2 φ M
climi.3 φ C +
climi.4 φ k Z F k = B
climi0.5 φ F 0
Assertion climi0 φ j Z k j B < C

Proof

Step Hyp Ref Expression
1 climi.1 Z = M
2 climi.2 φ M
3 climi.3 φ C +
4 climi.4 φ k Z F k = B
5 climi0.5 φ F 0
6 1 2 3 4 5 climi φ j Z k j B B 0 < C
7 subid1 B B 0 = B
8 7 fveq2d B B 0 = B
9 8 breq1d B B 0 < C B < C
10 9 biimpa B B 0 < C B < C
11 10 ralimi k j B B 0 < C k j B < C
12 11 reximi j Z k j B B 0 < C j Z k j B < C
13 6 12 syl φ j Z k j B < C