Metamath Proof Explorer


Theorem climi2

Description: Convergence of a sequence of complex numbers. (Contributed by NM, 11-Jan-2007) (Revised by Mario Carneiro, 31-Jan-2014)

Ref Expression
Hypotheses climi.1 Z = M
climi.2 φ M
climi.3 φ C +
climi.4 φ k Z F k = B
climi.5 φ F A
Assertion climi2 φ j Z k j B A < C

Proof

Step Hyp Ref Expression
1 climi.1 Z = M
2 climi.2 φ M
3 climi.3 φ C +
4 climi.4 φ k Z F k = B
5 climi.5 φ F A
6 1 2 3 4 5 climi φ j Z k j B B A < C
7 simpr B B A < C B A < C
8 7 ralimi k j B B A < C k j B A < C
9 8 reximi j Z k j B B A < C j Z k j B A < C
10 6 9 syl φ j Z k j B A < C