Metamath Proof Explorer


Theorem climinf2

Description: A convergent, nonincreasing sequence, converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses climinf2.k k φ
climinf2.n _ k F
climinf2.z Z = M
climinf2.m φ M
climinf2.f φ F : Z
climinf2.l φ k Z F k + 1 F k
climinf2.e φ x k Z x F k
Assertion climinf2 φ F sup ran F * <

Proof

Step Hyp Ref Expression
1 climinf2.k k φ
2 climinf2.n _ k F
3 climinf2.z Z = M
4 climinf2.m φ M
5 climinf2.f φ F : Z
6 climinf2.l φ k Z F k + 1 F k
7 climinf2.e φ x k Z x F k
8 nfv k j Z
9 1 8 nfan k φ j Z
10 nfcv _ k j + 1
11 2 10 nffv _ k F j + 1
12 nfcv _ k
13 nfcv _ k j
14 2 13 nffv _ k F j
15 11 12 14 nfbr k F j + 1 F j
16 9 15 nfim k φ j Z F j + 1 F j
17 eleq1w k = j k Z j Z
18 17 anbi2d k = j φ k Z φ j Z
19 fvoveq1 k = j F k + 1 = F j + 1
20 fveq2 k = j F k = F j
21 19 20 breq12d k = j F k + 1 F k F j + 1 F j
22 18 21 imbi12d k = j φ k Z F k + 1 F k φ j Z F j + 1 F j
23 16 22 6 chvarfv φ j Z F j + 1 F j
24 breq1 x = y x F k y F k
25 24 ralbidv x = y k Z x F k k Z y F k
26 nfv j y F k
27 nfcv _ k y
28 27 12 14 nfbr k y F j
29 20 breq2d k = j y F k y F j
30 26 28 29 cbvralw k Z y F k j Z y F j
31 30 a1i x = y k Z y F k j Z y F j
32 25 31 bitrd x = y k Z x F k j Z y F j
33 32 cbvrexvw x k Z x F k y j Z y F j
34 7 33 sylib φ y j Z y F j
35 3 4 5 23 34 climinf2lem φ F sup ran F * <