Metamath Proof Explorer


Theorem climinf2lem

Description: A convergent, nonincreasing sequence, converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses climinf2lem.1 Z = M
climinf2lem.2 φ M
climinf2lem.3 φ F : Z
climinf2lem.4 φ k Z F k + 1 F k
climinf2lem.5 φ x k Z x F k
Assertion climinf2lem φ F sup ran F * <

Proof

Step Hyp Ref Expression
1 climinf2lem.1 Z = M
2 climinf2lem.2 φ M
3 climinf2lem.3 φ F : Z
4 climinf2lem.4 φ k Z F k + 1 F k
5 climinf2lem.5 φ x k Z x F k
6 1 2 3 4 5 climinf φ F sup ran F <
7 3 frnd φ ran F
8 3 ffnd φ F Fn Z
9 2 1 uzidd2 φ M Z
10 fnfvelrn F Fn Z M Z F M ran F
11 8 9 10 syl2anc φ F M ran F
12 11 ne0d φ ran F
13 simpr φ y ran F y ran F
14 fvelrnb F Fn Z y ran F k Z F k = y
15 8 14 syl φ y ran F k Z F k = y
16 15 adantr φ y ran F y ran F k Z F k = y
17 13 16 mpbid φ y ran F k Z F k = y
18 17 adantlr φ k Z x F k y ran F k Z F k = y
19 nfv k φ
20 nfra1 k k Z x F k
21 19 20 nfan k φ k Z x F k
22 nfv k x y
23 rspa k Z x F k k Z x F k
24 simpl x F k F k = y x F k
25 simpr x F k F k = y F k = y
26 24 25 breqtrd x F k F k = y x y
27 26 ex x F k F k = y x y
28 23 27 syl k Z x F k k Z F k = y x y
29 28 ex k Z x F k k Z F k = y x y
30 29 adantl φ k Z x F k k Z F k = y x y
31 21 22 30 rexlimd φ k Z x F k k Z F k = y x y
32 31 adantr φ k Z x F k y ran F k Z F k = y x y
33 18 32 mpd φ k Z x F k y ran F x y
34 33 ralrimiva φ k Z x F k y ran F x y
35 34 adantlr φ x k Z x F k y ran F x y
36 35 ex φ x k Z x F k y ran F x y
37 36 reximdva φ x k Z x F k x y ran F x y
38 5 37 mpd φ x y ran F x y
39 infxrre ran F ran F x y ran F x y sup ran F * < = sup ran F <
40 7 12 38 39 syl3anc φ sup ran F * < = sup ran F <
41 6 40 breqtrrd φ F sup ran F * <