Metamath Proof Explorer


Theorem climinff

Description: A version of climinf using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017) (Revised by AV, 15-Sep-2020)

Ref Expression
Hypotheses climinff.1 k φ
climinff.2 _ k F
climinff.3 Z = M
climinff.4 φ M
climinff.5 φ F : Z
climinff.6 φ k Z F k + 1 F k
climinff.7 φ x k Z x F k
Assertion climinff φ F sup ran F <

Proof

Step Hyp Ref Expression
1 climinff.1 k φ
2 climinff.2 _ k F
3 climinff.3 Z = M
4 climinff.4 φ M
5 climinff.5 φ F : Z
6 climinff.6 φ k Z F k + 1 F k
7 climinff.7 φ x k Z x F k
8 nfv k j Z
9 1 8 nfan k φ j Z
10 nfcv _ k j + 1
11 2 10 nffv _ k F j + 1
12 nfcv _ k
13 nfcv _ k j
14 2 13 nffv _ k F j
15 11 12 14 nfbr k F j + 1 F j
16 9 15 nfim k φ j Z F j + 1 F j
17 eleq1w k = j k Z j Z
18 17 anbi2d k = j φ k Z φ j Z
19 fvoveq1 k = j F k + 1 = F j + 1
20 fveq2 k = j F k = F j
21 19 20 breq12d k = j F k + 1 F k F j + 1 F j
22 18 21 imbi12d k = j φ k Z F k + 1 F k φ j Z F j + 1 F j
23 16 22 6 chvarfv φ j Z F j + 1 F j
24 nfcv _ k
25 8 nfci _ k Z
26 nfcv _ k x
27 26 12 14 nfbr k x F j
28 25 27 nfralw k j Z x F j
29 24 28 nfrex k x j Z x F j
30 1 29 nfim k φ x j Z x F j
31 nfv j x F k
32 20 breq2d k = j x F k x F j
33 31 27 32 cbvralw k Z x F k j Z x F j
34 33 a1i k = j k Z x F k j Z x F j
35 34 rexbidv k = j x k Z x F k x j Z x F j
36 35 imbi2d k = j φ x k Z x F k φ x j Z x F j
37 30 36 7 chvarfv φ x j Z x F j
38 3 4 5 23 37 climinf φ F sup ran F <