Metamath Proof Explorer


Theorem climinff

Description: A version of climinf using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017) (Revised by AV, 15-Sep-2020)

Ref Expression
Hypotheses climinff.1 kφ
climinff.2 _kF
climinff.3 Z=M
climinff.4 φM
climinff.5 φF:Z
climinff.6 φkZFk+1Fk
climinff.7 φxkZxFk
Assertion climinff φFsupranF<

Proof

Step Hyp Ref Expression
1 climinff.1 kφ
2 climinff.2 _kF
3 climinff.3 Z=M
4 climinff.4 φM
5 climinff.5 φF:Z
6 climinff.6 φkZFk+1Fk
7 climinff.7 φxkZxFk
8 nfv kjZ
9 1 8 nfan kφjZ
10 nfcv _kj+1
11 2 10 nffv _kFj+1
12 nfcv _k
13 nfcv _kj
14 2 13 nffv _kFj
15 11 12 14 nfbr kFj+1Fj
16 9 15 nfim kφjZFj+1Fj
17 eleq1w k=jkZjZ
18 17 anbi2d k=jφkZφjZ
19 fvoveq1 k=jFk+1=Fj+1
20 fveq2 k=jFk=Fj
21 19 20 breq12d k=jFk+1FkFj+1Fj
22 18 21 imbi12d k=jφkZFk+1FkφjZFj+1Fj
23 16 22 6 chvarfv φjZFj+1Fj
24 nfcv _k
25 8 nfci _kZ
26 nfcv _kx
27 26 12 14 nfbr kxFj
28 25 27 nfralw kjZxFj
29 24 28 nfrexw kxjZxFj
30 1 29 nfim kφxjZxFj
31 nfv jxFk
32 20 breq2d k=jxFkxFj
33 31 27 32 cbvralw kZxFkjZxFj
34 33 a1i k=jkZxFkjZxFj
35 34 rexbidv k=jxkZxFkxjZxFj
36 35 imbi2d k=jφxkZxFkφxjZxFj
37 30 36 7 chvarfv φxjZxFj
38 3 4 5 23 37 climinf φFsupranF<