Metamath Proof Explorer


Theorem climle

Description: Comparison of the limits of two sequences. (Contributed by Paul Chapman, 10-Sep-2007) (Revised by Mario Carneiro, 1-Feb-2014)

Ref Expression
Hypotheses climadd.1 Z = M
climadd.2 φ M
climadd.4 φ F A
climle.5 φ G B
climle.6 φ k Z F k
climle.7 φ k Z G k
climle.8 φ k Z F k G k
Assertion climle φ A B

Proof

Step Hyp Ref Expression
1 climadd.1 Z = M
2 climadd.2 φ M
3 climadd.4 φ F A
4 climle.5 φ G B
5 climle.6 φ k Z F k
6 climle.7 φ k Z G k
7 climle.8 φ k Z F k G k
8 1 fvexi Z V
9 8 mptex j Z G j F j V
10 9 a1i φ j Z G j F j V
11 6 recnd φ k Z G k
12 5 recnd φ k Z F k
13 fveq2 j = k G j = G k
14 fveq2 j = k F j = F k
15 13 14 oveq12d j = k G j F j = G k F k
16 eqid j Z G j F j = j Z G j F j
17 ovex G k F k V
18 15 16 17 fvmpt k Z j Z G j F j k = G k F k
19 18 adantl φ k Z j Z G j F j k = G k F k
20 1 2 4 10 3 11 12 19 climsub φ j Z G j F j B A
21 6 5 resubcld φ k Z G k F k
22 19 21 eqeltrd φ k Z j Z G j F j k
23 6 5 subge0d φ k Z 0 G k F k F k G k
24 7 23 mpbird φ k Z 0 G k F k
25 24 19 breqtrrd φ k Z 0 j Z G j F j k
26 1 2 20 22 25 climge0 φ 0 B A
27 1 2 4 6 climrecl φ B
28 1 2 3 5 climrecl φ A
29 27 28 subge0d φ 0 B A A B
30 26 29 mpbid φ A B