Metamath Proof Explorer


Theorem climlec2

Description: Comparison of a constant to the limit of a sequence. (Contributed by NM, 28-Feb-2008) (Revised by Mario Carneiro, 1-Feb-2014)

Ref Expression
Hypotheses clim2ser.1 Z = M
climlec2.2 φ M
climlec2.3 φ A
climlec2.4 φ F B
climlec2.5 φ k Z F k
climlec2.6 φ k Z A F k
Assertion climlec2 φ A B

Proof

Step Hyp Ref Expression
1 clim2ser.1 Z = M
2 climlec2.2 φ M
3 climlec2.3 φ A
4 climlec2.4 φ F B
5 climlec2.5 φ k Z F k
6 climlec2.6 φ k Z A F k
7 3 recnd φ A
8 0z 0
9 uzssz 0
10 zex V
11 9 10 climconst2 A 0 × A A
12 7 8 11 sylancl φ × A A
13 eluzelz k M k
14 13 1 eleq2s k Z k
15 fvconst2g A k × A k = A
16 3 14 15 syl2an φ k Z × A k = A
17 3 adantr φ k Z A
18 16 17 eqeltrd φ k Z × A k
19 16 6 eqbrtrd φ k Z × A k F k
20 1 2 12 4 18 5 19 climle φ A B