Metamath Proof Explorer


Theorem climleltrp

Description: The limit of complex number sequence F is eventually approximated. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses climleltrp.k k φ
climleltrp.f _ k F
climleltrp.z Z = M
climleltrp.n φ N Z
climleltrp.r φ k N F k
climleltrp.a φ F A
climleltrp.c φ C
climleltrp.l φ A C
climleltrp.x φ X +
Assertion climleltrp φ j Z k j F k F k < C + X

Proof

Step Hyp Ref Expression
1 climleltrp.k k φ
2 climleltrp.f _ k F
3 climleltrp.z Z = M
4 climleltrp.n φ N Z
5 climleltrp.r φ k N F k
6 climleltrp.a φ F A
7 climleltrp.c φ C
8 climleltrp.l φ A C
9 climleltrp.x φ X +
10 4 3 eleqtrdi φ N M
11 uzss N M N M
12 10 11 syl φ N M
13 12 3 sseqtrrdi φ N Z
14 uzssz M
15 14 10 sselid φ N
16 eqid N = N
17 eqidd φ k N F k = F k
18 1 2 15 16 6 17 9 clim2d φ j N k j F k F k A < X
19 nfv k j N
20 1 19 nfan k φ j N
21 simplll φ j N k j F k A < X φ
22 uzss j N j N
23 22 ad2antlr φ j N k j j N
24 simpr φ j N k j k j
25 23 24 sseldd φ j N k j k N
26 25 adantr φ j N k j F k A < X k N
27 simpr φ j N k j F k A < X F k A < X
28 17 5 eqeltrd φ k N F k
29 28 adantr φ k N F k A < X F k
30 climcl F A A
31 6 30 syl φ A
32 31 adantr φ k N A
33 28 recnd φ k N F k
34 32 33 pncan3d φ k N A + F k - A = F k
35 34 eqcomd φ k N F k = A + F k - A
36 35 adantr φ k N F k A < X F k = A + F k - A
37 36 29 eqeltrrd φ k N F k A < X A + F k - A
38 7 ad2antrr φ k N F k A < X C
39 1 2 16 15 6 5 climreclf φ A
40 39 ad2antrr φ k N F k A < X A
41 29 40 resubcld φ k N F k A < X F k A
42 38 41 readdcld φ k N F k A < X C + F k - A
43 9 rpred φ X
44 43 ad2antrr φ k N F k A < X X
45 38 44 readdcld φ k N F k A < X C + X
46 8 ad2antrr φ k N F k A < X A C
47 40 38 41 46 leadd1dd φ k N F k A < X A + F k - A C + F k - A
48 33 adantr φ k N F k A < X F k
49 32 adantr φ k N F k A < X A
50 48 49 subcld φ k N F k A < X F k A
51 50 abscld φ k N F k A < X F k A
52 41 leabsd φ k N F k A < X F k A F k A
53 simpr φ k N F k A < X F k A < X
54 41 51 44 52 53 lelttrd φ k N F k A < X F k A < X
55 41 44 38 54 ltadd2dd φ k N F k A < X C + F k - A < C + X
56 37 42 45 47 55 lelttrd φ k N F k A < X A + F k - A < C + X
57 36 56 eqbrtrd φ k N F k A < X F k < C + X
58 29 57 jca φ k N F k A < X F k F k < C + X
59 21 26 27 58 syl21anc φ j N k j F k A < X F k F k < C + X
60 59 adantrl φ j N k j F k F k A < X F k F k < C + X
61 60 ex φ j N k j F k F k A < X F k F k < C + X
62 20 61 ralimdaa φ j N k j F k F k A < X k j F k F k < C + X
63 62 reximdva φ j N k j F k F k A < X j N k j F k F k < C + X
64 18 63 mpd φ j N k j F k F k < C + X
65 ssrexv N Z j N k j F k F k < C + X j Z k j F k F k < C + X
66 13 64 65 sylc φ j Z k j F k F k < C + X