Metamath Proof Explorer


Theorem climmpt

Description: Exhibit a function G with the same convergence properties as the not-quite-function F . (Contributed by Mario Carneiro, 31-Jan-2014)

Ref Expression
Hypotheses 2clim.1 Z = M
climmpt.2 G = k Z F k
Assertion climmpt M F V F A G A

Proof

Step Hyp Ref Expression
1 2clim.1 Z = M
2 climmpt.2 G = k Z F k
3 simpr M F V F V
4 fvex M V
5 1 4 eqeltri Z V
6 5 mptex k Z F k V
7 2 6 eqeltri G V
8 7 a1i M F V G V
9 simpl M F V M
10 fveq2 k = m F k = F m
11 fvex F m V
12 10 2 11 fvmpt m Z G m = F m
13 12 eqcomd m Z F m = G m
14 13 adantl M F V m Z F m = G m
15 1 3 8 9 14 climeq M F V F A G A