Metamath Proof Explorer


Theorem climmpt2

Description: Relate an integer limit on a not-quite-function to a real limit. (Contributed by Mario Carneiro, 17-Sep-2014)

Ref Expression
Hypotheses climmpt2.1 Z = M
climmpt2.2 φ M
climmpt2.3 φ F V
climmpt2.5 φ k Z F k
Assertion climmpt2 φ F A n Z F n A

Proof

Step Hyp Ref Expression
1 climmpt2.1 Z = M
2 climmpt2.2 φ M
3 climmpt2.3 φ F V
4 climmpt2.5 φ k Z F k
5 eqid n Z F n = n Z F n
6 1 5 climmpt M F V F A n Z F n A
7 2 3 6 syl2anc φ F A n Z F n A
8 4 ralrimiva φ k Z F k
9 fveq2 k = m F k = F m
10 9 eleq1d k = m F k F m
11 10 cbvralvw k Z F k m Z F m
12 fveq2 m = n F m = F n
13 12 eleq1d m = n F m F n
14 13 cbvralvw m Z F m n Z F n
15 11 14 bitri k Z F k n Z F n
16 8 15 sylib φ n Z F n
17 16 r19.21bi φ n Z F n
18 17 fmpttd φ n Z F n : Z
19 1 2 18 rlimclim φ n Z F n A n Z F n A
20 7 19 bitr4d φ F A n Z F n A